Skip to main content

Advertisement

Log in

Effect of Cu content on martensitic transformation and shape memory behavior in Ti31.5Hf15Zr5Ni48.5−xCux alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The impact of Cu doping on the martensitic transformation and shape memory properties of a high-temperature shape memory alloy system, Ti31.5Hf15Zr5Ni48.5−xCux (x = 0, 5, 10, 15, 20), was investigated. Both the martensitic transformation temperature (Ms) and the transformation enthalpy decrease monotonically with increasing Cu content x, while the recoverable strain exhibits a saddle curve with a minimum value at x = 10. These Cu content-dependent behaviors were attributed to the constraint effect caused by the different size distribution of Ti2Ni-like second phases. Additionally, a scaled linear relationship between Ms and several elemental features, including the modified valence electron concentration, electronegativity, and atomic volume, was established to describe the Cu content dependence of Ms across various Cu-containing TiNi-based systems. The experimental results presented herein, along with the proposed functional form, offer insights for the design of Cu-containing shape memory alloys.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study is available from the corresponding authors upon reasonable request.

References

  1. Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

  2. Humbeeck JV (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273:134–148

    Article  Google Scholar 

  3. Nnamchi P, Younes A, González S (2019) A review on shape memory metallic alloys and their critical stress for twinning. Intermetallics 105:61–78

    Article  CAS  Google Scholar 

  4. Ma J, Karaman I, Noebe RD (2013) High temperature shape memory alloys. Int Mater Rev 55(5):257–315

    Article  Google Scholar 

  5. Zeng Z, Oliveira JP, Yang M, Song D, Peng B (2017) Functional fatigue behavior of NiTi-Cu dissimilar laser welds. Mater Des 114:282–287

    Article  CAS  Google Scholar 

  6. Karakoc O, Hayrettin C, Bass M, Wang SJ, Canadinc D, Mabe JH, Lagoudas DC, Karaman I (2017) Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Mater 138:185–197

    Article  CAS  Google Scholar 

  7. Humbeeck JV (2001) Shape memory alloys: a material and a technology. Adv Eng Mater 3(11):837–850

    Article  Google Scholar 

  8. Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  9. Bozzolo G, Mosca HO, del Grosso MF (2008) Energy of formation, lattice parameter and bulk modulus of (Ni, X)Ti alloys with X = Fe, Pd, Pt, Au, Al, Cu, Zr, Hf. Intermetallics 16(5):668–675

    Article  CAS  Google Scholar 

  10. Shi H, Delville R, Srivastava V, James RD, Schryvers D (2014) Microstructural dependence on middle eigenvalue in Ti–Ni–Au. J Alloys Compd 582:703–707

    Article  CAS  Google Scholar 

  11. Panduranga MK, Shin DD, Carman GP (2006) Shape memory behavior of high temperature Ti–Ni–Pt thin films. Thin Solid Films 515(4):1938–1941

    Article  CAS  Google Scholar 

  12. Sawaguchi T, Sato M, Ishida A (2002) Microstructure and shape memory behavior of Ti51.2(Pd27.0Ni21.8) and Ti49.5(Pd28.5Ni22.0) thin films. Mater Sci Eng A 332(1–2):47–55

    Article  Google Scholar 

  13. Meng XL, Cai W, Zheng YF, Zhao LC (2006) Phase transformation and precipitation in aged Ti–Ni–Hf high-temperature shape memory alloys. Mater Sci Eng A 438–440:666–670

    Article  Google Scholar 

  14. Sakurai J, Hata S (2012) Search for Ti–Ni–Zr thin film metallic glasses exhibiting a shape memory effect after crystallization. Mater Sci Eng A 541:8–13

    Article  CAS  Google Scholar 

  15. Evirgen A, Pons J, Karaman I, Santamarta R, Noebe RD (2018) H-phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr high-temperature shape memory alloys. Shape Memory Superelast 4(1):85–92

    Article  Google Scholar 

  16. Yang F, Coughlin DR, Phillips PJ, Yang L, Devaraj A, Kovarik L, Noebe RD, Mills MJ (2013) Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy. Acta Mater 61(16):6191–6206

    Article  Google Scholar 

  17. Hong SH, Kim JT, Park HJ, Kim YS, Suh JY, Na YS, Lim KR, Shim CH, Park JM, Kim KB (2017) Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti–Hf–Zr high temperature shape memory alloys. J Alloys Compd 692:77–85

    Article  CAS  Google Scholar 

  18. Karakoc O, Atli KC, Evirgen A, Pons J, Santamarta R, Benafan O, Noebe RD, Karaman I (2020) Effects of training on the thermomechanical behavior of NiTiHf and NiTiZr high temperature shape memory alloys. Mater Sci Eng A 794:139857

    Article  CAS  Google Scholar 

  19. Oliveira JP, Schell N, Zhou N, Wood L, Benafan O (2019) Laser welding of precipitation strengthened Ni-rich NiTiHf high temperature shape memory alloys: microstructure and mechanical properties. Mater Des 162:229–234

    Article  CAS  Google Scholar 

  20. Meng XL, Zheng YF, Wang Z, Zhao LC (2000) Effect of aging on the phase transformation and mechanical behavior of Ti36Ni49Hf15 high temperature shape memory alloy. Scr Mater 42(4):341–348

    Article  CAS  Google Scholar 

  21. Hsieh SF, Wu SK (1998) A study on lattice parameters of martensite in Ti50.5xNi49.5Zrx shape memory alloys. J Alloys Compd 270(1–2):237–241

    Article  CAS  Google Scholar 

  22. Hsieh SF, Wu SK (2000) Martensitic transformation of quaternary Ti50.5xNi495Zrx/2Hfx/2 (x = 0–20 at.%) shape memory alloys. Mater Charact 45(2):143–152

    Article  CAS  Google Scholar 

  23. Hsieh SF, Chang WK (2002) Martensitic transformation of an aged/thermal-cycled Ti30.5Ni49.5Zr10Hf10 shape memory alloy. J Mater Sci 37(14):2851–2856

    Article  CAS  Google Scholar 

  24. Pang JB, Xu YY, Tian J, Zhou YM, Xue DZ, Ding XD, Sun J (2021) Effects of Ti/Ni and Hf/Zr ratio on the martensitic transformation behavior and shape memory effect of TiNiHfZr alloys. Mater Sci Eng A 807:140850

    Article  CAS  Google Scholar 

  25. Dang PF, Ye F, Zhou YM, Ding L, Pang JB, Zhang L, Ding XD, Sun J, Dai S, Lookman T, Xue DZ (2022) Low-fatigue and large room-temperature elastocaloric effect in a bulk Ti49.2Ni40.8Cu10 alloy. Acta Mater 229:117802

    Article  CAS  Google Scholar 

  26. Nam TH, Saburi T, Shimizu K (1990) Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys. Mater Trans JIM 31(11):959–967

    Article  Google Scholar 

  27. Meng XM, Cai W, Lau KT, Zhao LC, Zhou LM (2005) Phase transformation and microstructure of quaternary TiNiHfCu high temperature shape memory alloys. Intermetallics 13:197–201

    Article  CAS  Google Scholar 

  28. Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier HJ (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52:3383–3402

    Article  CAS  Google Scholar 

  29. Ortin J, Delaey L (2002) Hysteresis in shape-memory alloys. Int J Non-Linear Mech 37:1275–1281

    Article  Google Scholar 

  30. Kim WC, Kim YJ, Kim JS, Kim YS, Na MY, Kim WT, Kim DH (2019) Correlation between the thermal and superelastic behavior of Ni50xTi35Zr15Cux shape memory alloys. Intermetallics 107:24–33

    Article  CAS  Google Scholar 

  31. Li SH, Cong DY, Sun XM, Zhang Y, Chen Z, Nie ZH, Li RG, Li FQ, Ren Y, Wang YD (2019) Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy. Mater Res Lett 7(12):482–489

    Article  CAS  Google Scholar 

  32. Shahmir H, Nill-Ahmadabadi M, Mohammadi M, Huang Y, Andrzejczuk M, Lewandowska M, Langdon TG (2020) Effect of Cu on amorphization of a TiNi alloy during HPT and shape memory effect after post-deformation annealing. Adv Eng Mater 22(1):1900387

    Article  CAS  Google Scholar 

  33. Chang YT, Lee MH, Chu MW, Chen CH (2022) Phase formations and microstructures of Ti20Zr15Hf15Ni35Cu15 high-entropy shape memory alloy under different aging conditions. Mater Today Adv 14:100223

    Article  CAS  Google Scholar 

  34. Li SH, Cong DY, Chen Z, Li SW, Song C, Cao YX, Nie ZH, Wang YD (2021) A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery. Mater Res Lett 9(6):263–269

    Article  CAS  Google Scholar 

  35. Firstova GS, Kosorukova TA, Koval YN, Verhovlyuk PA (2015) Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation. Shap. Mwm. Superelasticity 1:400

  36. Liang XL, Chen Y, Shen HM, Zhang ZF, Li W, Wang YN (2001) Thermal cycling stability and two-way shape memory effect of Ni–Cu–Ti–Hf alloys. Solid State Commun 119(6):381–385

    Article  CAS  Google Scholar 

  37. Dang PF, Zhou YM, Pang JB, Ding XD, Sun J, Lookman T, Xue DZ (2023) Achieving stable actuation response and elastocaloric effect in a nanocrystalline Ti50Ni40Cu10 alloy. Scr Mater 226:115263

    Article  CAS  Google Scholar 

  38. Acar E, Karaca HE, Basaran B, Yang F, Mill MJ, Noebe RD, Chumlyakov YI (2013) Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals. Mater Sci Eng A 573:161–165

    Article  CAS  Google Scholar 

  39. Saghaian SM, Karaca HE, Tobe H, Turabi AS, Saedi S, Saghaian SE, Chumlyakov YI, Noebe RD (2017) High strength NiTiHf shape memory alloys with tailorable properties. Acta Mater 134:211–220

    Article  CAS  Google Scholar 

  40. Pfeuffer L, Lemke J, Shayanfar N, Riegg S, Koch D, Taubel A, Scheibel F, Kani NA, Adabifiroozjaei E, Luna LM, Skokov KP, Gutfleisch O (2021) Microstructure engineering of metamagnetic Ni–Mn-based Heusler compounds by Fe-doping: a roadmap towards excellent cyclic stability combined with large elastocaloric and magnetocaloric effects. Acta Mater 221:117390

    Article  CAS  Google Scholar 

  41. Bhagyaraj J, Ramaiah KV, Saikrishna CN, Bhaumik SK (2013) Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot. J Alloys Compd 581:344–351

    Article  CAS  Google Scholar 

  42. Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61(19):7422–7431

    Article  CAS  Google Scholar 

  43. Meng XL, Tong YX, Lau KT, Cai W, Zhou LM, Zhao LC (2002) Effect of Cu addition on phase transformation of Ti–Ni–Hf high-temperature shape memory alloys. Mater Lett JIM 57(2):452–456

    Article  CAS  Google Scholar 

  44. Ur Rehman S, Khan M, Khan AN, Ali L, Jaffery SIH, Khurram M (2019) Quaternary alloying of copper with Ti50Ni50Pd25 high temperature shape memory alloys. Mater Sci Eng A 763:138–148

    Article  Google Scholar 

  45. Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213–231

    Article  CAS  Google Scholar 

  46. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678

    Article  CAS  Google Scholar 

  47. Zarinejad M, Liu Y, Tong Y (2009) Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys. Intermetallics 17(11):914–919

    Article  CAS  Google Scholar 

  48. Zarinejad M, Liu Y (2008) Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons. Adv Funct Mater 18(18):2789–2794

    Article  CAS  Google Scholar 

  49. Wang RL, Yan JB, Xiao HB, Xu LS, Marchenkov VV, Xu LF, Yang CP (2011) Effect of electron density on the martensitic transformation in Ni–Mn–Sn alloys. J Alloys Compd 509:6834–6837

    Article  CAS  Google Scholar 

  50. Zarinejad M, Wada K, Pahlevani F, Katal R (2021) Valence electron ratio for design of shape memory alloys with desired phase transformation temperatures. Shape Memory Superelast 7(1):179–189

    Article  Google Scholar 

  51. Tian Y, Yuan RH, Xue DZ, Zhou YM, Wang YF, Ding XD, Sun J, Lookman T (2021) Determining multi-component phase diagrams with desired characteristics using active learning. Adv Sci 8(1):2003165

    Article  CAS  Google Scholar 

  52. Tian XH, Shi DD, Zhang K, Li HX, Zhou LW, Ma TY, Wang C, Wen QL, Tan CL (2022) Machine-learning model for prediction of martensitic transformation temperature in NiMnSn-based ferromagnetic shape memory alloys. Comput Mater Sci 215:111811

    Article  CAS  Google Scholar 

  53. Xue DZ, Xue DQ, Yuan RH, Zhou YM, Balachandran PV, Ren XB, Ding XD, Sun J, Lookman T (2017) An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater 125:532–541

    Article  CAS  Google Scholar 

  54. Liu HX, Yan HL, Zhao Y, Jia N, Tang S, Cong DY, Yang B, Li ZB, Zhang YD, Esling C, Zhao X, Zuo L (2024) Machine learning informed tetragonal ratio c/a of martensite. Comput Mater Sci 233:112735

    Article  Google Scholar 

  55. Xue DZ, Balachandran PV, Hogden J, Theiler J, Xue DQ, Lookman T (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7(1):1–9

    Article  Google Scholar 

  56. Zadeh SH, Behbahanian A, Broucek J, Fan MZ, Vazquez G, Noroozi M, Trehern W, Qian XN, Karaman I, Arroyave R (2023) An interpretable boosting-based predictive model for transformation temperatures of shape memory alloys. Comp Mater Sci 226:112225

    Article  CAS  Google Scholar 

  57. Minami D, Uesugi T, Takigawa Y, Higashi K (2019) Artificial neural network assisted by first-principles calculations for predicting transformation temperatures in shape memory alloys. Int J Mod Phy B 33:1950055

    Article  CAS  Google Scholar 

  58. Zhang Y, Xu XJ (2020) Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys. Shape Memory Superelast 6(4):374–386

    Article  Google Scholar 

  59. He SY, Wang YM, Zhang ZY, Xiao F, Zuo SG, Zhou Y, Cai XR, Jin XJ (2023) Interpretable machine learning workflow for evaluation of the transformation temperatures of TiZrHfNiCoCu high entropy shape memory alloys. Mater Des 225:111513

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Nos. 52173228, 52271190 and 51931004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumei Zhou, Xiangdong Ding or Dezhen Xue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Nima Haghdadi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, J., Dang, P., Tian, J. et al. Effect of Cu content on martensitic transformation and shape memory behavior in Ti31.5Hf15Zr5Ni48.5−xCux alloys. J Mater Sci 59, 11096–11109 (2024). https://doi.org/10.1007/s10853-024-09820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09820-0

Navigation