Skip to main content
Log in

Effect of Mn–Nd co-doping on structure, magnetism, and electrochemistry of cobalt ferrite

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cobalt ferrite nanoparticles co-doped with Mn–Nd elements were fabricated by easy co-precipitation, in which the Mn content was fixed to 0.2 and only the Nd content was changed, and the caused changes of structure, magnetism, and electrochemistry of cobalt ferrite were explored using XRD, SEM, FTIR, VSM, LSV, and EIS methods. The results indicated that the spinel structure and the spherical morphology of cobalt ferrite are not changed after Mn–Nd co-doping, while some microscopic parameters such as lattice constant, crystallite size, and particle size have some changes. Co-doping and the subsequent changes of microscopic parameters significantly enhance the integrated magnetism of cobalt ferrite. An increase of Nd content leads to a monotonically increase in the coercivity, while the saturation magnetization reaches its optimum when Nd content is 0.05. This sample also has the largest maximum magnetic energy product in all samples. Electrochemical analysis showed that co-doping of Mn–Nd can also enhance the oxygen evolution reaction performance of cobalt ferrite nanoparticles. The improvement of the related performance demonstrates that the Mn–Nd co-doping is a very useful way of enhancing the integrated magnetism of cobalt ferrite accompanied by the enhancement of electrochemical properties, which supply a good direction for the following research of cobalt ferrite as a multifunctional material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on reasonable request.

References

  1. Patel J, Parekh K, Upadhyay RV (2017) Performance of Mn-Zn ferrite magnetic fluid in a prototype distribution transformer under varying loading conditions. Int J Therm Sci 114:64–71. https://doi.org/10.1016/j.ijthermalsci.2016.12.011

    Article  CAS  Google Scholar 

  2. Zhou XY, Wang J, Zhou LL, Wang YG, Yao DS (2021) Structure, magnetic and microwave absorption properties of NiZnMn ferrite ceramics. J Magn Magn Mater 534:168043. https://doi.org/10.1016/j.jmmm.2021.168043

    Article  CAS  Google Scholar 

  3. Ghanbari M, Davar F, Shalan AE (2021) Effect of rosemary extract on the microstructure, phase evolution, and magnetic behavior of cobalt ferrite nanoparticles and its application on anti-cancer drug delivery. Ceram Int 47:9409–9417. https://doi.org/10.1016/j.ceramint.2020.12.073

    Article  CAS  Google Scholar 

  4. Bardapurkar PP, Shewale SS, Arote SA, Pansambal SS, Barde NP (2021) Effect of precursor pH on structural, magnetic and catalytic properties of CoFe2O4@SiO2 green nanocatalyst. Res Chem Intermed 47(5):1919–1939. https://doi.org/10.1007/s11164-020-04366-7

    Article  CAS  Google Scholar 

  5. Almessiere MA, Slimani Y, Sertkol M, Khan FA, Nawaz M, Tombuloglu H, Al-Suhaimi EA, Baykal A (2019) Ce-Nd co-substituted nanospinel cobalt ferrites: an investigation of their structural, magnetic, optical, and apoptotic properties. Ceram Int 45:16147–16156. https://doi.org/10.1016/j.ceramint.2019.05.133

    Article  CAS  Google Scholar 

  6. Pedrosa FJ, Rial J, Golasinski KM, Guzik MN, Quesada A, Fernández JF, Deledda S, Camarero J et al (2016) Towards high performance CoFe2O4 isotropic nanocrystalline powder for permanent magnet applications. Appl Phys Lett 108:253103. https://doi.org/10.1063/1.4969064

    Article  CAS  Google Scholar 

  7. Khazdozian HA, Hadimani RL, Jiles DC (2017) Development of rare earth free permanent magnet generator using Halbach cylinder rotor design. Renew Energ 112:84–92. https://doi.org/10.1016/j.renene.2017.05.034

    Article  CAS  Google Scholar 

  8. Mounkachi O, Lamouri R, Abraime B, Ez-Zahraouy H, El Kenz A, Hamedoun M, Benyoussef A (2017) Exploring the magnetic and structural properties of Nd-doped cobalt nanoferrite for permanent magnet applications. Ceram Int 43:14401–14404. https://doi.org/10.1016/j.ceramint.2017.07.209

    Article  CAS  Google Scholar 

  9. López-Ortega A, Lottini E, Fernández CDJ, Sangregorio C (2015) Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem Mater 27:4048–4056. https://doi.org/10.1021/acs.chemmater.5b01034

    Article  CAS  Google Scholar 

  10. Pedrosa FJ, Rial J, Golasinski KM, Guzik MN, Quesada A, Fernández JF, Deledda S, Camarero J, Bollero A (2016) Towards high performance CoFe2O4 isotropic nanocrystalline powder for permanent magnet applications. Appl Phys Lett 109:223105. https://doi.org/10.1063/1.4969064

    Article  CAS  Google Scholar 

  11. Abraime B, Maalam KE, Fkhar L, Mahmoud A, Boschini F, Ait Tamerd M, Benyoussef A, Hamedoun M (2020) Influence of synthesis methods with low annealing temperature on the structural and magnetic properties of CoFe2O4 nanopowders for permanent magnet application. J Magn Magn Mater 500:166416. https://doi.org/10.1016/j.jmmm.2020.166416

    Article  CAS  Google Scholar 

  12. Sultan S, Tiwari JN, Singh AN, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim KS (2019) Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv Energy Mater 9(22):1900624. https://doi.org/10.1002/aenm.201900624

    Article  CAS  Google Scholar 

  13. Geng S, Liu YQ, Yu YS, Yang WW, Li HB (2020) Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction. Nano Res 13:121–126. https://doi.org/10.1007/s12274-019-2582-6

    Article  CAS  Google Scholar 

  14. Chen H, Ma YB, Han Y, Mao X, Hu YB, Zhao X, Dong QL, Wen B et al (2024) Ligand and strain synergistic effect in NiFeP0.32 LDH for triggering efficient oxygen evolution reaction. Small 2309689:1–10. https://doi.org/10.1002/smll.202309689

    Article  CAS  Google Scholar 

  15. Kashyap V, Kurungot S (2018) Zirconium-substituted cobalt ferrite nanoparticle supported N-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for rechargeable Zn−air battery. ACS Catal 8:3715–3726. https://doi.org/10.1021/acscatal.7b03

    Article  CAS  Google Scholar 

  16. Royer L, Guehl J, Zilbermann M, Dintzer T, Leuvrey C, Pichon BP, Savinova E, Bonnefont A (2023) Influence of the catalyst layer thickness on the determination of the OER activity of Fe3O4@CoFe2O4 core-shell nanoparticles. Electrochim Acta 446:141981. https://doi.org/10.1016/j.electacta.2023.141981

    Article  CAS  Google Scholar 

  17. Saddeler S, Bendt G, Salamon S, Haase FT, Landers J, Timoshenko J, Rettenmaier C, Jeon HS et al (2021) Influence of the cobalt content in cobalt iron oxides on the electrocatalytic OER activity. J Mater Chem A 9:25381–25390. https://doi.org/10.1039/d1ta06568h

    Article  CAS  Google Scholar 

  18. Elayakumar K, Dinesh A, Manikandan A, Palanivelu M, Kavitha G, Prakash S, Kumar RT, Jaganathan SK et al (2019) Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J Magn Magn Mater 476:157–165. https://doi.org/10.1016/j.jmmm.2018.09.089

    Article  CAS  Google Scholar 

  19. Haque SU, Saikia KK, Murugesan G, Kalainathan S (2017) A study on dielectric and magnetic properties of lanthanum substituted cobalt ferrite. J Alloy Compd 701:612–618. https://doi.org/10.1016/j.jallcom.2016.11.309

    Article  CAS  Google Scholar 

  20. Avazpour L, Shokrollahi H, Toroghinejad MR, Zandi Khajeh MA (2016) Effect of rare earth substitution on magnetic and structural properties of Co1−xRExFe2O4 (RE: Nd, Eu) nanoparticles prepared via EDTA/EG assisted sol–gel synthesis. J Alloy Compd 662:441–447. https://doi.org/10.1016/j.jallcom.2015.11.188

    Article  CAS  Google Scholar 

  21. Srinivasamurthy KM, Kubrin SP, Matteppanavar S, Sarychev DA, Kumar PM, Azale HW, Rudraswamy B (2018) Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications. Ceram Int 44(8):9194–9203

    Article  CAS  Google Scholar 

  22. Batoo KM, Salah D, Kumar G, Kumar A, Singh M, El-sadek MA, Mir FA, Imran A et al (2016) Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe2O4 ferrite nanoparticles. J Magn Magn Mater 411:91–97. https://doi.org/10.1016/j.jmmm.2016.03.058

    Article  CAS  Google Scholar 

  23. Jabbar R, Sabeeh SH, Hameed AM (2020) Structural, dielectric and magnetic properties of Mn2+ doped cobalt ferrite nanoparticles. J Magn Magn Mater 494:16572. https://doi.org/10.1016/j.jmmm.2019.165726

    Article  CAS  Google Scholar 

  24. Virlan C, Bulai G, Caltun OF, Hempelmann R, Pui A (2016) Rare earth metals’ influence on the heat generating capability of cobalt ferrite nanoparticles. Ceram Int 42:11958–11965. https://doi.org/10.1016/j.ceramint.2016.04.121

    Article  CAS  Google Scholar 

  25. Aziz C, Azhdar B (2022) Synthesis of dysprosium doped cobalt ferrites nanoparticles by solgel auto-combustion method and influence of grinding techniques on structural, morphological, and magnetic properties. J Magn Magn Mater 542:168577. https://doi.org/10.1016/j.jmmm.2021.168577

    Article  CAS  Google Scholar 

  26. Yue HH, Zhang WL, Yu B, Hu Y, Lu YJ, Chen YF, Yang DX (2020) Three-dimensional porous cobalt ferrite and carbon nanorod hybrid network as highly efficient electrocatalyst for oxygen evolution reaction. J Mater Sci 55:11489–11500. https://doi.org/10.1007/s10853-020-04718-z

    Article  CAS  Google Scholar 

  27. Ou G, Wu FC, Huang K, Hussain N, Zu D, Wei HH, Ge BH, Yao HZ et al (2019) Boosting the electrocatalytic water oxidation performance of CoFe2O4 nanoparticles by surface defect engineering. ACS appl mater Interfaces 11(4):3978–3983. https://doi.org/10.1021/acsami.8b19265

    Article  PubMed  Google Scholar 

  28. Krishnan RR, Prasannakumar AT, Chandran SR, Prema KH (2022) A novel approach for the fabrication of Cobalt ferrite and Nickel ferrite nanoparticles-magnetic and electrocatalytic studies. J Mater Sci Mater Electron 33:17100–17112. https://doi.org/10.1007/s10854-022-08586-y

    Article  CAS  Google Scholar 

  29. Qin XF, Zhang T, Wang JZ, Zhao R, Ma YL, Wang F, Xu XH (2022) Influence of Ce-Mn co-doping on the structure and magnetic properties of cobalt ferrites. J Alloy Compd 929:167256. https://doi.org/10.1016/j.jallcom.2022.167256

    Article  CAS  Google Scholar 

  30. Qin XF, Ma YL, Zhang H, Zhang T, Wang F, Xu XH (2024) Significantly enhanced magnetism in cobalt ferrite by manganese and terbium co-doping. J Alloy Compd 971:172758. https://doi.org/10.1016/j.jallcom.2022.167256

    Article  CAS  Google Scholar 

  31. Mohamed WS, Abu-Dief AM (2020) Impact of rare earth europium (RE-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2−xEuxO4 nanosystems. Ceram Int 46:16196–16209. https://doi.org/10.1016/j.ceramint.2020.03.175

    Article  CAS  Google Scholar 

  32. Reddy RA, Rao KR, Babu BR, Kumar GK, Rajesh C, Chatterjee A, Jyothi NK (2019) Structural, electrical and magnetic properties of cobalt ferrite with Nd3+ doping. Rare Met 41(1):240–245. https://doi.org/10.1007/s12598-019-01285-4

    Article  CAS  Google Scholar 

  33. Xi GX, Zhao TT, Wang L, Dun CW, Zhang Y (2018) Effect of doping rare earths on magnetostriction characteristics of CoFe2O4 prepared from spent Li-ion batteries. Physica B 534:76–82. https://doi.org/10.1016/j.physb.2018.01.036

    Article  CAS  Google Scholar 

  34. Chakrabarty S, Dutta A, Pal M (2015) Effect of Mn and Ni codoping on ion dynamics of nanocrystalline cobalt ferrite: a structure property correlation study. Electrochim Acta 184:70–79. https://doi.org/10.1016/j.electacta.2015.10.027

    Article  CAS  Google Scholar 

  35. Ghosh MP, Mukherjee S (2019) Microstructural, magnetic, and hyperfine characterizations of Cu-doped cobalt ferrite nanoparticles. J Am Ceram Soc 102:7509–7520. https://doi.org/10.1111/jace.16687

    Article  CAS  Google Scholar 

  36. Wu XF, Ding Z, Song NN, Li L, Wang W (2016) Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles. Ceram Int 42(3):4246–4255. https://doi.org/10.1016/j.ceramint.2015.11.100

    Article  CAS  Google Scholar 

  37. Shakil M, Inayat U, Arshad MI, Nabi G, Khalid NR, Tariq NH, Shah A, Iqbal MZ (2020) Influence of zinc and cadmium co-doping on optical and magnetic properties of cobalt ferrites. Ceram Int 46:7767–7773. https://doi.org/10.1016/j.ceramint.2019.11.280

    Article  CAS  Google Scholar 

  38. Almessiere MA, Korkmaz AD, Slimani Y, Nawaz M, Ali S, Baykal A (2019) Magneto-optical properties of Rare Earth metals substituted Co-Zn spinel nanoferrites. Ceram Int 45:3449–3458. https://doi.org/10.1016/j.ceramint.2018.10.260

    Article  CAS  Google Scholar 

  39. Chen FX, Jia JT, Xu ZG, Zhou B, Liao CS, Yan CH, Chen LY, Zhao HB (1999) Microstructure, magnetic, and magneto-optical properties of chemical synthesized Co-RE (RE = Ho, Er, Tm, Yb, Lu) ferrite nanocrystalline films. J Appl Phys 86:2727. https://doi.org/10.1063/1.371117

    Article  Google Scholar 

  40. Pachpinde AM, Langade MM, Lohar KS, Patange SM, Shirsath SE (2014) Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2-xO4 nanoparticles. Chem Phys 429:20–26. https://doi.org/10.1016/j.chemphys.2013.11.018

    Article  CAS  Google Scholar 

  41. Kumar L, Kar M (2012) Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2-xLaxO4). Ceram Int 38(6):4771–4782. https://doi.org/10.1016/j.ceramint.2012.02.065

    Article  CAS  Google Scholar 

  42. Javeda H, Iqbalb F, Agboolac PO, Khan MA, Warsi MF, Shakir I (2019) Structural, electrical and magnetic parameters evaluation of nanocrystalline rare earth Nd3+-substituted nickel-zinc spinel ferrite particles. Ceram Int 45(8):11125–11130. https://doi.org/10.1016/j.ceramint.2019.02.176

    Article  CAS  Google Scholar 

  43. Liu TT, Asirib AM, Sun XP (2016) Electrodeposited Co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale 8:3911–3915. https://doi.org/10.1039/c5nr07170d

    Article  CAS  PubMed  Google Scholar 

  44. Fang YH, Liu ZP (2014) Tafel kinetics of electrocatalytic reactions: from experiment to first-principles. ACS Catal 4:4364–4376. https://doi.org/10.1021/cs501312v

    Article  CAS  Google Scholar 

  45. Wu PW, Wu J, Si HN, Zhang Z, Liao QL, Wang X, Dai FL, Ammarah K, Kang Z, Zhang Y (2020) 3D holey-graphene architecture expedites ion transport kinetics to push the OER performance. Adv Energy Mater 10:2001005. https://doi.org/10.1002/aenm.202001005

    Article  CAS  Google Scholar 

  46. Nong HN, Falling LJ, Bergmann A, Klingenhof M, Tran HP, Spöri C, Mom R, Timoshenko J et al (2020) Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587(7834):408–413. https://doi.org/10.1038/s41586-020-2908-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2022YFB3505301)

Author information

Authors and Affiliations

Authors

Contributions

XQ was involved in conceptualization, methodology, investigation, writing—original draft, formal analysis, visualization, and writing—review and editing. HZ was involved in investigation, and data curation. FW was involved in methodology, investigation. YM was involved in investigation, testing, and data curation. XX was involved in conceptualization, supervision, and project administration.

Corresponding author

Correspondence to Xiufang Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Zhang, H., Wang, F. et al. Effect of Mn–Nd co-doping on structure, magnetism, and electrochemistry of cobalt ferrite. J Mater Sci 59, 10182–10192 (2024). https://doi.org/10.1007/s10853-024-09797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09797-w

Navigation