Skip to main content
Log in

In vitro assessment of bovine-derived hydroxyapatite for bone xenografts

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bovine bone-derived hydroxyapatite (BBHAp) has been reported to be a biocompatible and efficient bone graft substitute. In this study, hydroxyapatite (HAp) was produced by combining the cleaning process with alkali and thermal treatment of bovine bone. The calcination temperature was 700°C. The functionality of the BBHAp scaffold as a bone graft substitute was determined by its physicochemical properties and in vitro biocompatibility. Physicochemical properties such as mechanical properties, degradation, ion composition, crystallinity, crystallite size, surface characteristics, and porosity were characterized using several analytical tools, including X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), X-ray fluorescence (XRF), Vickers hardness, contact angle (CA), and biodegradation. XRD, SEM, and TEM analyses confirmed the hexagonal and spherical crystalline structure of BBHAp with a size of approximately 100 nm. Elemental analysis using EDX and XRF confirmed the presence of Sr, Zn, Mg, and Na in the formulation, while SEM showed the hierarchical porous structures of BBHAp. The microhardness values were approximately 229.44 ± 82.52 HV or 2.2501 ± 1.18 GPa.The porosity of BBHAp ranged from 25% to 47.18%, with a bulk density of 0,0324 g/cc. The biodegradation rate was approximately 0.7 mg/month. These results indicated that the BBHAp scaffold did not collapse under the conditions of in vitro cell cultivation. However, the results of this study, in which the contact angles of the materials were 0–11°, showed that the materials were hydrophilic. Cell activities were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) and Hoechst fluorescent staining assays. MTT assay results showed no cytotoxicity. Hoechst fluorescent staining showed cell adhesion and proliferation on the material surfaces after 72 h and 120 h. In conclusion, BBHAp can be considered a potential bone substitute material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anita Lett J, Sagadevan S, Fatimah I, Hoque ME, Lokanathan Y, Léonard E et al (2021) Recent advances in natural polymer-based hydroxyapatite scaffolds: properties and applications. Eur Polym J 148:110360

    Article  CAS  Google Scholar 

  2. Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ (2019) Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma 33(4):203–213

    Article  PubMed  Google Scholar 

  3. Sathiyavimal S, Vasantharaj S, LewisOscar F, Selvaraj R, Brindhadevi K, Pugazhendhi A (2020) Natural organic and inorganic–hydroxyapatite biopolymer composite for biomedical applications. Progress Org Coat 147:105858

    Article  CAS  Google Scholar 

  4. Wong SK, Yee MMF, Chin KY, Ima-Nirwana S (2023) A review of the application of natural and synthetic scaffolds in bone regeneration. J Funct Biomater 14(5):286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li B, Moriarty TF, Webster T, Xing M (2020) Racing for the surface: antimicrobial and interface tissue engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9

    Book  Google Scholar 

  6. Ye K, Cao L, Li S, Yu L, Ding J (2016) Interplay of matrix stiffness and cell-cell contact in regulating differentiation of stem cells. ACS Appl Mater Interfaces 8(34):21903–21913

    Article  CAS  PubMed  Google Scholar 

  7. Wan W, Cheng B, Zhang C, Ma Y, Li A, Xu F et al (2019) Synergistic effect of matrix stiffness and inflammatory factors on osteogenic differentiation of MSC. Biophys J 117(1):129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Narayan R (2009) Biomedical materials. Springer, Boston. https://doi.org/10.1007/978-0-387-84872-3

    Book  Google Scholar 

  9. Hoornaert A, Layrolle P (2020) Chapter 8—bone regenerative issues related to bone grafting biomaterials. In: Alghamdi H, Jansen J (eds) Dental implants and bone grafts. Woodhead Publishing, Sawston, pp 207–215

    Google Scholar 

  10. Hayakawa S (2015) In vitro degradation behavior of hydroxyapatite. In: Mucalo M (ed) Hydroxyapatite (Hap) for biomedical applications. Woodhead Publishing, Sawston, pp 85–105

    Chapter  Google Scholar 

  11. Odusote JK, Danyuo Y, Baruwa AD, Azeez AA (2019) Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J Appl Biomater Funct Mater 17(2):228080001983682. https://doi.org/10.1177/2280800019836829

    Article  CAS  Google Scholar 

  12. Martinez-Marquez D, Delmar Y, Sun S, Stewart RA (2020) Exploring macroporosity of additively manufactured titanium metamaterials for bone regeneration with quality by design: a systematic literature review. Materials 13(21):4794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abifarin JK, Obada DO, Dauda ET, Dodoo-Arhin D (2019) Experimental data on the characterization of hydroxyapatite synthesized from biowastes. Data Brief 26:104485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ha LV, Mai DNT, Cao HT (2021) Fabrication of nano- or micro-powder for hydroxyapatite particles derived from bovine bone. VNUHCM J Sci Technol Dev 24(1):875–883

    Google Scholar 

  15. Hà L, Tien C, Tran D (2020) The The variable size consideration of hydroxyapatite extracted from bovine bone at different temperature furnaces. Sci Technol Dev J—Nat Sci 5(1):1005–1014

    Article  Google Scholar 

  16. Manalu J, Soegijono B, Indrani D.(2015) Characterization of hydroxyapatite derived from bovine bone. Asian J Appl Sci. 3(4)

  17. Pramanik S, Hanif A, Pingguan-Murphy B, Abu ON (2012) Morphological change of heat treated bovine bone: a comparative study. Materials 6(1):65–75

    Article  PubMed  PubMed Central  Google Scholar 

  18. Forero-Sossa PA, Olvera-Alvarez IU, Salazar-Martinez JD, Espinosa-Arbelaez DG, Segura-Giraldo B, Giraldo-Betancur AL (2021) Biogenic hydroxyapatite powders: effects of source and processing methodologies on physicochemical properties and bioactive response. Mater Charact 173:110950

    Article  CAS  Google Scholar 

  19. Nagy G, Lorand T, Patonai Z, Montsko G, Bajnoczky I, Marcsik A et al (2008) Analysis of pathological and non-pathological human skeletal remains by FT-IR spectroscopy. Forensic Sci Int 175(1):55–60

    Article  CAS  PubMed  Google Scholar 

  20. Thompson TJU, Gauthier M, Islam M (2009) The application of a new method of fourier transform infrared spectroscopy to the analysis of burned bone. J Archaeol Sci 36(3):910–914

    Article  Google Scholar 

  21. Airini R, Iordache F, Alexandru D, Savu L, Epureanu FB, Mihailescu D et al (2019) Senescence-induced immunophenotype, gene expression and electrophysiology changes in human amniocytes. J Cell Mol Medi 23(11):7233–7245. https://doi.org/10.1111/jcmm.14495

    Article  CAS  Google Scholar 

  22. de Oliveira PGFP, de Melo Soares MS, Silveira E Souza AMM, TabaPalioto MDB, Messora MR et al (2021) Influence of nano-hydroxyapatite coating implants on gene expression of osteogenic markers and micro-CT parameters. An in vivo study in diabetic rats. J Biomed Mater Res A 109(5):682–694

    Article  PubMed  Google Scholar 

  23. Dumitrescu CR, Neacsu IA, Surdu VA, Nicoara AI, Iordache F, Trusca R et al (2021) Nano-hydroxyapatite vs. xenografts: synthesis, characterization, and in vitro behavior. Nanomaterials 11(9):2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rincón-López JA, Hermann-Muñoz JA, Giraldo-Betancur AL, De Vizcaya-Ruiz A, Alvarado-Orozco JM, Muñoz-Saldaña J (2018) Synthesis, characterization and in vitro study of synthetic and bovine-derived hydroxyapatite ceramics: a comparison. Materials 11(3):333

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mucalo M (2015) Hydroxyapatite (Hap) for biomedical applications. Woodhead Publishing, Sawston

    Google Scholar 

  26. Pires LA, de Meira CR, Tokuhara CK, de Oliveira FA, Dainezi VB, Zardin Graeff MS et al (2020) Wettability and pre-osteoblastic behavior evaluations of a dense bovine hydroxyapatite ceramics. J Oral Sci 62(3):259–264

    Article  CAS  PubMed  Google Scholar 

  27. Canillas M, Pena P, de Aza AH, Rodríguez MA (2017) Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio 56(3):91–112

    Article  CAS  Google Scholar 

  28. Chang H, Chen Y, Tuan W, Wu C, Lai P (2021) Attachment and migration of cells on porous bone graft. J Am Ceram Soc 104(4):1649–1654. https://doi.org/10.1111/jace.17591

    Article  CAS  Google Scholar 

  29. Petrova OV, Bakina KA, Ehrlich H (2021) NEXAFS study of carbonate substituted bioapatite. J Phys: Conf Ser 2103(1):012153

    Google Scholar 

  30. Dorozhkin SV (2018) Current state of bioceramics. J Ceram Sci Technol. https://doi.org/10.4416/JCST2018-00026

    Article  Google Scholar 

  31. Rahavi SS, Ghaderi O, Monshi A, Fathi MH (2017) A comparative study on physicochemical properties of hydroxyapatite powders derived from natural and synthetic sources. Russ J Non-ferrous Metals. 58(3):276–286

    Article  Google Scholar 

  32. Xiao D, Zhang J, Zhang C, Barbieri D, Yuan H, Moroni L et al (2020) The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Acta Biomater 106:22–33

    Article  CAS  PubMed  Google Scholar 

  33. Han KS, Sathiyaseelan A, Saravanakumar K, Wang MH (2022) Wound healing efficacy of biocompatible hydroxyapatite from bovine bone waste for bone tissue engineering application. J Environ Chem Eng 10(1):106888

    Article  CAS  Google Scholar 

  34. Prathap S, Rajesh KS, Thomas NG et al (2022) Synthesis and extraction of hydroxyapatite grafts from animal sources. J Dental Sci Res Rep 139:1–6

    Article  Google Scholar 

  35. Burduel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A (2022) Inorganic nanoparticles in bone healing applications. Pharmaceutics 14(4):770

    Article  Google Scholar 

  36. Rabiei A (2009) Hip prosthesis. In: Narayan R (ed) Biomedical materials. Springer, Boston. https://doi.org/10.1007/978-0-387-84872-3_13

    Chapter  Google Scholar 

  37. Londoño-Restrepo SM, Ramirez-Gutierrez CF, Del Real A, Rubio-Rosas E, Rodriguez-García ME (2016) Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air. J Mater Sci 51(9):4431–4441

    Article  Google Scholar 

  38. Marques A, Miranda G, Silva F, Pinto P, Carvalho Ó (2021) Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. J Biomed Mater Res 109(3):377–393. https://doi.org/10.1002/jbm.b.34706

    Article  CAS  Google Scholar 

  39. Chen Z, Zhang X, Yang Y, Zhou K, Wragg N, Liu Y et al (2017) Fabrication and characterization of 3D complex hydroxyapatite scaffolds with hierarchical porosity of different features for optimal bioactive performance. Ceramics Int 43(1):336–344

    Article  CAS  Google Scholar 

  40. Kazimierczak P, Przekora A (2020) Osteoconductive and osteoinductive surface modifications of biomaterials for bone regeneration: a concise review. Coatings 10(10):971

    Article  CAS  Google Scholar 

  41. LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108(11):4742–4753s

    Article  PubMed  Google Scholar 

  42. Cell responses to surface and architecture of tissue engineering scaffolds | IntechOpen [Internet]. [cited 2024 Feb 18]. Available from: https://www.intechopen.com/chapters/19013

  43. Webster BE Thomas.(2014) Cell response to nanoscale features and its implications in tissue regeneration: an orthopedic perspective. In: Nanotechnology and regenerative engineering. 2nd ed. CRC Press

  44. Wang X, Chen X, Hodgson P, Wen C (2006) Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation. Trans Nonferrous Metals Soc China. 16:e744–e748

    Article  Google Scholar 

  45. Heidari F, Razavi M, Zamani MAA, Tahriri M, Tayebi L (2018) A comparison between the properties of natural hydroxyapatite produced by cold isostatic pressing and spark plasma sintering techniques. J Aust Ceram Soc 54(2):337–344. https://doi.org/10.1007/s41779-017-0158-z

    Article  CAS  Google Scholar 

  46. Asgharzadeh Shirazi H, Ayatollahi MR, Beigzadeh B (2016) Preparation and characterisation of hydroxyapatite derived from natural bovine bone and PMMA/BHA composite for biomedical applications. Mater Technol 31(8):448–453. https://doi.org/10.1080/10667857.2015.1105577

    Article  CAS  Google Scholar 

  47. Perić Kačarević Z, Kavehei F, Houshmand A, Franke J, Smeets R, Rimashevskiy D et al (2018) Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration. Int J Artif Organs 41(11):789–800. https://doi.org/10.1177/0391398818771530

    Article  CAS  PubMed  Google Scholar 

  48. Valencia-Llano CH, López-Tenorio D, Grande-Tovar CD (2022) Biocompatibility assessment of two commercial bone xenografts by in vitro and in vivo methods. Polymers 14(13):2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Q, Douglas T, Zamponi C, Becker ST, Sherry E, Sivananthan S et al (2023) Comparison of in vitro biocompatibility of NanoBone® and BioOss® for human osteoblasts comparison of in vitro biocompatibility. Clin Oral Implant Res 22(11):1259–1264. https://doi.org/10.1111/j.1600-0501.2010.02100.x

    Article  Google Scholar 

Download references

Acknowledgements

Not Applicable

Author information

Authors and Affiliations

Authors

Contributions

Huu Tien Cao provided conceptualization, project administration, and funding acquisition. Van Linh Ha performed methodology, visualization, writing–review and editing, and resource. Diem Ngoc Thi Mai presented investigation and writing–original draft.

Corresponding author

Correspondence to Van Linh Ha.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 249 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H.T., Ha, V.L. & Mai, D.N.T. In vitro assessment of bovine-derived hydroxyapatite for bone xenografts. J Mater Sci 59, 10406–10418 (2024). https://doi.org/10.1007/s10853-024-09794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09794-z

Navigation