Skip to main content

Advertisement

Log in

Development of aluminum matrix composites through accumulative roll bonding: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Accumulative roll bonding (ARB) is a severe plastic deformation technique commonly applied to produce ultrafine grain materials. ARB has evolved as a promising method in the last decade to produce aluminum matrix composites (AMCs) effectively, overcoming the common issues faced in various casting methods. This review summarizes the research works accomplished in producing AMCs using ARB and critically discusses the literature on each aspect. Homogenous distribution of reinforcement particles in the composite is exceptionally achieved in this process. The factors affecting the distribution, the breakage of particles and the grain size are critically reviewed and elucidated. The interfacial details and porosity issues are addressed. The difficulty in processing nano- and multiple particles to produce AMCs is explained. ARB provides high-strength composites. The underlying strengthening mechanisms for significant improvement in tensile, wear and corrosion properties are explained. ARB is recently applied as a secondary processing tool to improve the distribution and properties of cast AMCs. This aspect of ARB is further covered. The review concludes with applications, future development of this process and extensions to produce other metallic composites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Reproduced with permission from Ref. [46]. Copyright [2018, Elsevier].

Figure 3

Reproduced with permission from Ref. [51]. Copyright [2019, Elsevier].

Figure 4

Reproduced with permission from Ref. [55]. Copyright [2015, Elsevier].

Figure 5

Reproduced with permission from Ref. [75]. Copyright [2015, Elsevier].

Figure 6

Reproduced with permission from Ref. [85]. Copyright [2010, Elsevier].

Figure 7

Reproduced with permission from Ref. [75]. Copyright [2015, Elsevier].

Figure 8

Reproduced with permission from Ref. [99]. Copyright [2013, Elsevier].

Figure 9

Reproduced with permission from Ref. [111]. Copyright [2016, Elsevier].

Figure 10

Reproduced with permission from Ref. [66]. Copyright [2018, John Wiley and Sons].

Figure 11

Reproduced with permission from Ref. [117]. Copyright [2014, Elsevier].

Figure 12

Reproduced with permission from Ref. [120]. Copyright [2014, Elsevier].

Figure 13

Reproduced with permission from Ref. [75]. Copyright [2015, Elsevier].

Figure 14

Reproduced with permission from Ref. [109]. Copyright [2018, Elsevier].

Figure 15

Reproduced with permission from Ref. [128]. Copyright [2019, Elsevier].

Figure 16

Reproduced with permission from Ref. [127]. Copyright [2012, Elsevier].

Figure 17

Reproduced with permission from Ref. [109]. Copyright [2018, Springer].

Figure 18

Reproduced with permission from Ref. [51]. Copyright [2019, Elsevier].

Figure 19
Figure 20

Reproduced with permission from Ref. [172]. Copyright [2014, Elsevier].

Figure 21

Reproduced with permission from Ref. [172]. Copyright [2014, Elsevier].

Figure 22

Reproduced with permission from Ref. [69]. Copyright [2016, Springer].

Figure 23

Reproduced with permission from Ref. [21]. Copyright [2017, Springer].

Figure 24

Reproduced with permission from Ref. [81]. Copyright [2013, Elsevier].

Figure 25

Reproduced with permission from Ref. [189]. Copyright [2017, Springer].

Figure 26

Reproduced with permission from Ref. [189]. Copyright [2017, Springer].

Figure 27

Reproduced with permission from Ref. [195]. Copyright [2011, Springer].

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

Abbreviations

Al:

Aluminum

Al2O3 :

Alumina

AMC:

Aluminum matrix composites

ARB:

Accumulative roll bonding

B4C:

Boron carbide

CAR:

Continuous annealing and roll bonding

COF:

Coefficient of friction

CTE:

Coefficient of thermal expansion

CP:

Commercially pure

Cu:

Copper

EBSD:

Electron backscatter diffraction

ECAP:

Equal channel angular pressing

EDS:

Energy-dispersive spectroscopy

EIS:

Electrochemical impedance spectroscopy

FSP:

Friction stir processing

GB:

Grain boundaries

GNB:

Geometrically necessary boundaries

Gr:

Graphite

HAGB:

High-angle grain boundaries

l x b x w:

Length × breadth × width

LAGB:

Low-angle grain boundaries

LSP:

Liquid-state processing

MA:

Mechanical alloying

Mg:

Magnesium

MMC:

Metal matrix composites

MWCNT:

Multi-walled carbon nanotubes

ND:

Normal direction

P/M:

Powder metallurgy

RD:

Rolling direction

RHA:

Rice husk ash

SAD:

Selective area diffraction

SEM:

Scanning electron microscopy

SiC:

Silicon carbide

SPD:

Severe plastic deformation

SSP:

Solid-state processing

TD:

Transverse direction

TEM:

Transmission electron microscopy

Ti:

Titanium

TC4:

Ti6Al4V

TiAl3 :

Titanium aluminide

UTS:

Ultimate tensile strength

UFG:

Ultrafine-grained

W:

Tungsten

WC:

Tungsten carbide

ZrO2 :

Zirconium oxide

References

  1. Rosso M (2006) Ceramic and metal matrix composites: routes and properties. J Mat Process Technol 175:364–375

    Article  CAS  Google Scholar 

  2. Miracle DB (2005) Metal matrix composites–from science to technological significance. Comp Sci Technol 65:2526–2540

    Article  CAS  Google Scholar 

  3. Kaczmar JW, Pietrzak K, Włosiński W (2000) The production and application of metal matrix composite materials. J Mat Process Technol 106:58–67

    Article  Google Scholar 

  4. Alizadeh M, Shakery A, Salahinejad E (2019) Aluminum-matrix composites reinforced with E-glass fibers by cross accumulative roll bonding process. J Alloy Compd 804:450–456

    Article  CAS  Google Scholar 

  5. Harris B (1999) Engineering composite materials. The Institute of Materials, London

    Google Scholar 

  6. Clyne TW (2001) Metal matrix composites: matrices and processing. In: Encyclopedia of materials: science and technology, Elsevier, 1:17179

  7. Peters ST (1998) Handbook of composites. Process Research, New York

    Book  Google Scholar 

  8. Chawla KK (2012) Metal matrix composites. In: Composite materials, Springer, New York

  9. Chawla N, Chawla KK (2013) Metal matrix composites. Springer, New York

    Book  Google Scholar 

  10. Evans A, Marchi CS, Mortensen A (2003) Metal matrix composites in industry. Springer, New York

    Book  Google Scholar 

  11. Mallick PK (1997) Composites engineering handbook. Springer, New York

    Book  Google Scholar 

  12. Mondolfo LF (2013) Aluminum alloys: structure and properties. Butterworth Group, London

    Google Scholar 

  13. Gao RH, Li F, Niu WT (2023) Response mechanism of mechanical behavior with Mg plate microstructure evolution during Al/Mg/Al composite plate rolled by hard plate. Met Mater Int 29:2004–2016

    Article  CAS  Google Scholar 

  14. Lumley RN (2018) Thermal conductivity of aluminium high-pressure die castings. Fundam Aluminium Metall 234:21727

    Google Scholar 

  15. Casati R (2016) Aluminum matrix composites reinforced with alumina nanoparticles. Springer, Switzerland

    Book  Google Scholar 

  16. Ramkumar KR, Srinivasan A, Sivakumar B (2023) Microstructural and electrochemical behavior of spark plasma sintered (Cu-10Zn) + Al2O3 nanocomposites. Materialia 32:101896

    Article  CAS  Google Scholar 

  17. Muralidharan N, Chockalingam K, Dinaharan I (2018) Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles. J Alloy Compd 735:216774

    Article  Google Scholar 

  18. Yigezu BS, Jha PK, Mahapatra MM (2013) The key attributes of synthesizing ceramic particulate reinforced Al-based matrix composites through stir casting process: a review. Mat Mfg Pro 28:969979

    Google Scholar 

  19. Tjong SC, Ma ZY (2008) Microstructural and mechanical characteristics of in situ metal matrix composites. Mat Sci Eng: R: Reports 29:49113

    Google Scholar 

  20. Angelo PC, Subramanian R (2008) Powder metallurgy: science, technology and applications. PHI Learning Pvt, New Delhi

    Google Scholar 

  21. Alhosseini FA, Alemi NM (2017) Effect of particles content on microstructure, mechanical properties, and electrochemical behavior of aluminum-based hybrid composite processed by accumulative roll bonding process. Metal Mater Trans A 48:1343–1354

    Article  Google Scholar 

  22. Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mat Sci 58:383–502

    Article  CAS  Google Scholar 

  23. Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J Nano mat 12:625218

    Google Scholar 

  24. Shercliff HR, Colegrove PA, Mishra RS (2007) Process modeling. Friction Stir Weld Process 85:187217

    Google Scholar 

  25. Rathee S, Maheshwari S, Siddiquee AN (2018) A review of recent progress in the solid-state fabrication of composites and functionally graded systems via friction stir processing. Crit Rev Solid State Mater Sci 43:334–366

    Article  CAS  Google Scholar 

  26. Ma ZY, Feng AH, Chen DL (2018) Recent advances in friction stir welding/processing of aluminum alloys: microstructural evolution and mechanical properties. Crit Rev Solid State Mater Sci 43:269–333

    Article  CAS  Google Scholar 

  27. Tsuji N, Saito Y, Utsunomiya H, Tanigawa S (1999) Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scripta Mater 40(7):795–800

    Article  CAS  Google Scholar 

  28. Tsuji N, Saito Y, Lee SH (2004) Accumulative roll-bonding and other new techniques to produce bulk ultrafine grained materials. Nanomater Severe Plast Deformation 98:477–490

    Google Scholar 

  29. Yazdani Z, Toroghinejad Edris H (2022) EBSD evaluation of Al-TiAl3 composites manufactured through CRB-annealing-ARB and CRB-ARB-annealing methods. Trans Indian Inst Met 75:113–131

    Article  CAS  Google Scholar 

  30. Jamaati R, Toroghinejad MR (2010) Application of ARB process for manufacturing high-strength, finely dispersed and highly uniform Cu/Al2O3 composite. Mat Sci Eng A 527:7430–7435

    Article  Google Scholar 

  31. Alizadeh M (2012) Effects of temperature and B4C content on the bonding properties of roll-bonded aluminum strips. J Mater Sci 47:4689–4695

    Article  CAS  Google Scholar 

  32. Yoo SJ, Han SH, Kim WJ (2012) Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon-nanotube-containing aluminum powders. Scr Mater 67:129–132

    Article  CAS  Google Scholar 

  33. Ramkumar KR, Dinaharan I (2020) Accumulative roll bonding route for composite materials production. In: Brabazon D (ed) Encyclopedia of materials: composites, 1st edn. Elsevier, Netherland, pp 679–701

    Google Scholar 

  34. Pashangeh S, Alizadeh M, Amini R (2022) Structural and corrosion behavior investigation of novel nano-quasicrystalline Al-Cr-Fe reinforced Al-matrix composites produced by ARB process. J Alloy Compd 890:161774

    Article  CAS  Google Scholar 

  35. Jamaati R, Amirkhanlou S, Toroghinejad MR (2012) Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods. J Mat Process Technol. 21, 1249–1253

    CAS  Google Scholar 

  36. Fattahi M, Aghaei VN, Dabiri AR (2015) Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding. Mat Sci Eng A 648:47–50

    Article  CAS  Google Scholar 

  37. Karimi M, Toroghinejad MR (2014) An alternative method for manufacturing high-strength CP Ti–SiC composites by accumulative roll bonding process. Mater Des 59:494–501

    Article  CAS  Google Scholar 

  38. Jamaati R, Toroghinejad MR, Edris H (2014) Effect of SiC nanoparticles on the mechanical properties of steel-based nanocomposite produced by accumulative roll bonding process. Mater Des 54:168–173

    Article  CAS  Google Scholar 

  39. Tayyebi M, Rahmatabadi D, Karimi A (2021) Investigation of annealing treatment on the interfacial and mechanical properties of Al5052/Cu multilayered composites subjected to ARB process. J Alloy Compd 871:159513

    Article  CAS  Google Scholar 

  40. Pramod SL, Bakshi SR, Murty BS (2015) Aluminum-based cast in situ composites: a review. J Mat Process Technol 24:2185207

    Google Scholar 

  41. Dabou O, Bensouilah A, Baudin T (2023) Evolution of the texture, microstructure, and magnetic properties of a Permimphy alloy after accumulative roll bonding and aging. J Mater Sci 58:15884–15900

    Article  CAS  Google Scholar 

  42. Avettand MN, Simar A (2016) A review about friction stir welding of metal matrix composites. Mater Charact 120:1–17

    Article  Google Scholar 

  43. Jafarian J, Razavi SH (2015) Microstructure evolution and mechanical properties in ultrafine grained Al/TiC composite fabricated by accumulative roll bonding. Comp Part B 77:84–92

    Article  CAS  Google Scholar 

  44. Shamanian M, Mohammadnezhad M, Szpunar J (2014) Production of high-strength Al/Al2O3/WC composite by accumulative roll bonding. J Mat Process Technol 23:3152–3158

    CAS  Google Scholar 

  45. Reihanian M, Bagherpour E, Paydar MH (2012) Particle distribution in metal matrix composites fabricated by accumulative roll bonding. Mat Sci Technol 28:103–108

    Article  Google Scholar 

  46. Wagih A, Fathy A, Ibrahim D (2018) Experimental investigation on strengthening mechanisms in Al-SiC nanocomposites and 3D FE simulation of Vickers indentation. J Alloy Compd 752:13747

    Article  Google Scholar 

  47. Alizadeh M, Ghaffari M, Amini R (2013) Properties of high specific strength Al–4 wt.% Al2O3/B4C nanocomposite produced by the accumulative roll bonding process. Mater Des 50:427–432

    Article  CAS  Google Scholar 

  48. Jamaati R, Toroghinejad MR, Hoseini M, Szpunar JA (2012) Development of texture during ARB in metal matrix composite. Mater Sci Technol 8(4):406–410

    Article  Google Scholar 

  49. Rong X, Zhao D (2023) He C (2023) Review: recent progress in aluminum matrix composites reinforced by in situ oxide ceramics. J Mater Sci. https://doi.org/10.1007/s10853-023-09120-z

    Article  Google Scholar 

  50. Yazdani Z, Toroghinejad EH (2022) Effects of annealing on the fabrication of Al-TiAl3 nanocomposites before and after accumulative roll bonding and evaluation of strengthening mechanisms. Acta Metall Sin 35:633–650

    Article  Google Scholar 

  51. Melaibari A, Fathy A, Mansouri M, Eltaher MA (2019) Experimental and numerical investigation on strengthening mechanisms of nanostructured Al-SiC composites. J Alloy Compd 774:1123–1132

    Article  CAS  Google Scholar 

  52. El-watery M (2013) Electrical and mechanical performance of zirconia-nickel functionally graded materials. Int J Eng 26:375–382

    Google Scholar 

  53. Jamaati R, Toroghinejad MR, Hoseini M (2011) Texture development in Al/Al2O3 MMCs produced by anodizing and ARB processes. Mater Sci Eng A 528:3573–3580

    Article  Google Scholar 

  54. El-Kady O, Fathy A (2014) Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mat Des 54:348–353

    Article  Google Scholar 

  55. Gao YX, Wang XP, Jiang WB (2018) High damping capacity and low-density M2052/Al composites fabricated by accumulative roll bonding. J Alloy Compd 757:41522

    Article  Google Scholar 

  56. Adachi K, Yamashita T, Taneda Y (1996) Dynamical transmission electron microscopy microstructure associated with electron-phonon interaction in high-damping Cu-Mn alloys. Phil Mag A 73:1009–1034

    Article  CAS  Google Scholar 

  57. Wu YQ, Yin FX, Hono K (2006) The decomposed γ-phase microstructure in an Mn–Cu–Ni–Fe alloy studied by HRTEM and 3D atom probe. Scr Mater 46:717–722

    Article  Google Scholar 

  58. Fukuhara M, Yin F, Ohsawa Y (2006) High-damping properties of Mn–Cu sintered alloys. Mater Sci Eng 442:439–443

    Article  Google Scholar 

  59. Dehkordi HF, Toroghinejad MR, Raeissi K (2013) Fabrication of Al/Al2O3/TiC hybrid composite by anodizing and accumulative roll bonding processes and investigation of its microstructure and mechanical properties. Mater Sci Eng 585:460–467

    Article  Google Scholar 

  60. Le HR, Sutcliffe MP, Wang PZ (2004) Surface oxide fracture in cold aluminium rolling. Acta Mat 52:911–920

    Article  CAS  Google Scholar 

  61. Ana SA, Reihanian M, Lotfi BJ (2015) Accumulative roll bonding (ARB) of the composite coated strips to fabricate multi-component Al-based metal matrix composites. Mater Sci Eng 647:303–312

    Article  CAS  Google Scholar 

  62. Hwang YM, Hsu HH, Lee HJ (1996) Analysis of plastic instability during sandwich sheet rolling. Int J Mach Tool Manf 36:47–62

    Google Scholar 

  63. Eizadjou M, Talachi AK, Manesh HD (2008) Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Comp Sci Technol 68:2003–2009

    Article  CAS  Google Scholar 

  64. Min G, Lee JM, Kang SB (2006) Evolution of microstructure for multilayered Al/Ni composites by the accumulative roll bonding process. Mater Lett 60:325–359

    Article  Google Scholar 

  65. Mozaffari A, Manesh HD, Janghorban K (2010) Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J Alloy Compd 489:1039

    Article  Google Scholar 

  66. Ivanov KV, Fortuna SV, Kalashnikova TA, Glazkova EA (2019) Effect of alumina nanoparticles on the microstructure, texture, and mechanical properties of ultrafine-grained aluminum processed by accumulative roll bonding. Adv Eng Mater 21:1701135

    Article  Google Scholar 

  67. Hassan SF, Gupta M (2003) Development of high strength magnesium copper-based hybrid composites with enhanced tensile properties. Mater Sci Technol 19:25–39

    Article  Google Scholar 

  68. Liu J, Ding Y, Sun K (2022) The bonding interface and tribological properties of Cu–graphite sandwich composites fabricated via accumulative roll-bonding processes. Front Mater 8:778631

    Article  Google Scholar 

  69. Reihanian M, Fayezipour S, Baghal SL (2017) Nanostructured Al/SiC-graphite composites produced by accumulative roll bonding: role of graphite on microstructure, wear and tensile behavior. J Mat Process Technol 26:190–198

    Google Scholar 

  70. Yazdani Z, Toroghinejad MR, Edris HA (2018) Novel method for the fabrication of Al-matrix nanocomposites reinforced by mono-dispersed TiAl3 intermetallic via a three-step process of cold-roll bonding, heat-treatment and accumulative roll bonding. J Alloy Compd 747:217–226

    Article  CAS  Google Scholar 

  71. Saito Y (1998) Ultra-fine-grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Script Mater 39:1220–1227

    Article  CAS  Google Scholar 

  72. Lee SH, Saito Y, Tsuji N (2002) Role of shear strain in ultra-grain refinement by accumulative roll-bonding (ARB) process. Script Mater 46:281–285

    Article  CAS  Google Scholar 

  73. Kitahara H, Yada T, Tsushida M (2011) Microstructure and evaluation of wire-brushed Mg sheets. Procedia Eng 10:2743–2748

    Article  Google Scholar 

  74. Lee SH, Saito Y, Sakai T (2002) Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater Sci Eng 325:228–235

    Article  Google Scholar 

  75. Shamanian M, Mohammadnezhad M, Asgari H (2015) Fabrication and characterization of Al–Al2O3–ZrC composite produced by accumulative roll bonding (ARB) process. J Alloy Compd 618:19–26

    Article  CAS  Google Scholar 

  76. Alizadeh M, Paydar MH (2009) Study on the effect of presence of TiH2 particles on the roll bonding behavior of aluminum alloy strips. Mater Des 30:82–86

    Article  CAS  Google Scholar 

  77. Jawad Hassan D, Hosseinzadeh A (2021) Effect of layer architecture on the mechanical behavior of accumulative roll bonded interstitial free steel/aluminum composites. Mater Sci Eng 818:141387

    Article  Google Scholar 

  78. Alizadeh M, Ghaffari M, Amini R (2014) Investigation of grain refinement in Al/Al2O3/B4C nanocomposite produced by ARB. Comp Part B 58:438–442

    Article  Google Scholar 

  79. Amirkhanlou S, Rezaei MR, Niroumand B (2011) High-strength and highly-uniform composites produced by compo-casting and cold rolling processes. Mater Des 32:2085–2090

    Article  CAS  Google Scholar 

  80. Eizadjou M, Manesh HD, Janghorban K (2009) Mechanism of warm and cold roll bonding of aluminum alloy strips. Mater Des 30:4156–4161

    Article  CAS  Google Scholar 

  81. Kadkhodaee M, Babaiee M, Manesh HD (2013) Evaluation of corrosion properties of Al/nanosilica nanocomposite sheets produced by accumulative roll bonding (ARB) process. J Alloys Compd 576:66–71

    Article  CAS  Google Scholar 

  82. Dang X, Zhang B, Zhang Z (2021) Microstructural evolutions and mechanical properties of multilayered 1060Al/Al–Al2O3 composites fabricated by cold spraying and accumulative roll bonding. J Mat Res Technol 15:3895–3907

    Article  CAS  Google Scholar 

  83. Saito Y, Utsunomiya H, Tsuji N (1999) Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mat 47:579–583

    Article  CAS  Google Scholar 

  84. Jamatti R, Toroghinejad M, Rezaeian A (2022) Abnormal texture evolution of accumulative roll bonded Al–Cu by adding alumina particles. Heliyon 8:08723

    Google Scholar 

  85. Alizadeh M, Paydar MH (2010) Fabrication of nanostructure Al/SiCP composite by accumulative roll-bonding (ARB) process. J Alloy Compd 492:231–235

    Article  CAS  Google Scholar 

  86. Xing ZP, Kang SB, Kim HW (2002) Structure and properties of AA3003 alloy produced by accumulative roll bonding process. J Mater Sci 37:717–722

    Article  Google Scholar 

  87. Humphreys FJ, Hatherly M (2012) Recrystallization and related annealing phenomena. Elsevier, United Kingdom

    Google Scholar 

  88. Li BL, Tsuji N, Kamikawa N (2006) Microstructure homogeneity in various metallic materials heavily deformed by accumulative roll-bonding. Mater Sci Eng 423:331–342

    Article  Google Scholar 

  89. Liu W, Ke Y, Sugio K (2022) Effects of repeated accumulative roll bonding cycles on microstructural characteristics and tensile behaviors of Al2O3 particle reinforced aluminum-matrix composites. Mater Lett 320:1323–1386

    Article  Google Scholar 

  90. Sahli A, Bouaballah M, Saidi D (2021) Effect of an addition of vanadium on the mechanical properties of the A6061 alloy deformed by accumulative roll bonding. J Mater Eng Perform 30:7510–7522

    Article  CAS  Google Scholar 

  91. Edalati K, Bachmaier A, Beloshenko VA (2022) Nanomaterials by severe plastic deformation: a review of historical developments and recent advances. Mater Res Lett 10:1632–1656

    Article  Google Scholar 

  92. Yazdani A, Salahinejad E (2011) Evolution of reinforcement distribution in Al–B4C composites during accumulative roll bonding. Mater Des 32:3137–3142

    Article  CAS  Google Scholar 

  93. Stein J, Lenczowski B, AnglareT E (2014) Influence of the concentration and nature of carbon nanotubes on the mechanical properties of AA5083 aluminium alloy matrix composites. Carbon 77:44–52

    Article  CAS  Google Scholar 

  94. Magalhaes DCM, Cintho OM, Sordi VL (2022) Improved tensile properties in heterostructured 1050/7050 Al sheets produced by accumulative roll bonding. J Mater Res Technol 17:2014–2025

    Article  CAS  Google Scholar 

  95. Hausöl T, Höppel HW, Göken M (2010) Tailoring materials properties of UFG aluminium alloys by accumulative roll bonded sandwich-like sheets. J Mater Sci 45:4733–4738

    Article  Google Scholar 

  96. Schmidt CW, Knieke C, Maier V (2011) Accelerated grain refinement during accumulative roll bonding by nanoparticle reinforcement. Scr Mater 64:245–248

    Article  CAS  Google Scholar 

  97. Ardakani MR, Amirkhanlou S, Khorsand S (2014) Cross accumulative roll bonding-A novel mechanical technique for significant improvement of stir-cast Al/Al2O3 nanocomposite properties. Mater Sci Eng 591:144–149

    Article  CAS  Google Scholar 

  98. Ruppert M, Höppel HW, Göken M (2014) Influence of cross-rolling on the mechanical properties of an accumulative roll bonded aluminum alloy AA 6014. Mat Sci Eng: A 597:12–27

    Article  Google Scholar 

  99. Darmiani E, Danaee I, Golozar MA (2013) Reciprocating wear resistance of Al–SiC nanocomposite fabricated by accumulative roll bonding process. Mater Des 50:497–502

    Article  CAS  Google Scholar 

  100. Rezayat M, Akbarzadeh A (2012) Bonding behavior of Al–Al2O3 laminations during roll bonding process. Mater Des 36:874–879

    Article  CAS  Google Scholar 

  101. Darmiani E, Danaee I, Golozar MA (2013) Corrosion investigation of Al–SiC nano-composite fabricated by accumulative roll bonding (ARB) process. J Alloy Compd 552:31–39

    Article  CAS  Google Scholar 

  102. Poovazhagan L, Kalaichelvan K, Rajadurai A (2013) Characterization of hybrid silicon carbide and boron carbide nanoparticles-reinforced aluminum alloy composites. Procedia Eng 64:681–689

    Article  CAS  Google Scholar 

  103. Babu TM, Sugin MA, Muthukrishnan N (2012) Investigation on the characteristics of surface quality on machining of hybrid metal matrix composite (Al-SiC-B4C). Procedia Eng 38:2617–2624

    Article  CAS  Google Scholar 

  104. Ramnath BV, Elanchezhian C, Jaivignesh M (2014) Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites. Mat Des 58:3323–3338

    Google Scholar 

  105. Esawi A, Morsi K (2007) Dispersion of carbon nanotubes (CNTs) in aluminum powder. Comp Part A 38:646–650

    Article  Google Scholar 

  106. Bodunrin MO, Alaneme KK, Chown LH (2015) Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J Mater Res Technol 4(4):434–445

    Article  CAS  Google Scholar 

  107. Sajjadi SA, Parizi MT, Ezatpour HR (2012) Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties. J Alloy Compd 511:226–231

    Article  CAS  Google Scholar 

  108. Lloyd DJ (1994) Particle-reinforced aluminium and magnesium matrix composites. Int Mater Rev 39:1–23

    Article  Google Scholar 

  109. Nasresfahani MR, Shamanian M (2018) Development and characterization of Al/MWCNT-Al2O3 hybrid composite by accumulative roll bonding. J Mater Sci 53:10812–10821

    Article  Google Scholar 

  110. Baazamat S, Tajally M, Borhani E (2015) Fabrication and characteristic of Al-based hybrid nanocomposite reinforced with WO3 and SiC by accumulative roll bonding process. J Alloy Compd 653:39–46

    Article  CAS  Google Scholar 

  111. Fattah Naseri A (2016) Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via an accumulative roll bonding process. J Manuf Process 22:120–126

    Google Scholar 

  112. Liu CY, Wang Q, Jia YZ (2013) Evaluation of mechanical properties of 1060-Al reinforced with WC particles via warm accumulative roll bonding process. Mater Des 43:367–372

    Article  CAS  Google Scholar 

  113. Qian B, Zheng H, Wu R (2022) Grain refinement behavior of accumulative roll bonding-processed Mg-14Li-3Al-2Gd alloy. J Mater Eng Perform 17:2014–2025

    Google Scholar 

  114. Kim HW, Kang SB, Tsuji N (2005) Elongation increase in ultra-fine-grained Al–Fe–Si alloy sheets. Acta Mater 53:1737–1749

    Article  CAS  Google Scholar 

  115. Alizadeh M, Paydar MH (2012) High-strength nanostructured Al/B4C composite processed by cross-roll accumulative roll bonding. Mater Sci Eng 15:14–19

    Google Scholar 

  116. Azushima A, Kopp R, Korhonen A (2008) Severe plastic deformation (SPD) processes for metals. CIRP Ann 57:716–735

    Article  Google Scholar 

  117. Ahmadi A, Toroghinejad MR (2014) Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process. Mater Des 53:13–19

    Article  CAS  Google Scholar 

  118. Cepeda CM, Pozuelob M, Garcia JM (2008) Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites. Mater Sci Eng A 496:133–142

    Article  Google Scholar 

  119. Yu XX, Lee WB (2022) The design and fabrication of an alumina-reinforced aluminum composite material. Comp Part A 31:245–258

    Article  Google Scholar 

  120. Alizadeh M, Paydar MH, Terada D, Tsuji N (2012) Effect of SiC particles on the microstructure evolution and mechanical properties of aluminum during ARB process. Mater Sci Eng 540:132–143

    Article  Google Scholar 

  121. Huang J, Tayyebi M, Assari AH (2021) Effect of SiC particle size and severe deformation on mechanical properties and thermal conductivity of Cu/Al/Ni/SiC composite fabricated by ARB process. J Manuf Process 68:576–588

    Article  Google Scholar 

  122. Pasebani S, Toroghinejad MR (2010) Nano-grained 70/30 brass strip produced by accumulative roll-bonding (ARB) process. Mater Sci Eng 527:4917

    Google Scholar 

  123. Raei M, Toroghinejad MR, Jamaati R (2010) Effect of ARB process on textural evolution of AA1100 aluminum alloy. Mater Sci Eng: A 527:706873

    Article  Google Scholar 

  124. Ahmadi E, Ranjkesh M, Mansoori E (2017) Microstructure and mechanical properties of Al/ZrC/TiC hybrid nanocomposite filler metals of tungsten inert gas welding fabricated by accumulative roll bonding. J Manuf Process 26:1737

    Article  Google Scholar 

  125. Zhang Z, Chen DL (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scripta Mat 54:13216

    Article  Google Scholar 

  126. Fattahi M, Mohammady M, Sajjadi N (2015) Effect of TiC nanoparticles on the microstructure and mechanical properties of gas tungsten arc welded aluminum joints. J Mater Process Technol 217:219

    Article  Google Scholar 

  127. Liu CY, Wang Q, Jia YZ (2012) Effect of W particles on the properties of accumulatively roll-bonded Al/W composites. Mater Sci Eng: A 547:120–124

    Article  CAS  Google Scholar 

  128. Ramkumar KR, Natarajan S (2019) Effects of TiO2 nanoparticles on the microstructural evolution and mechanical properties on accumulative roll bonded Al nanocomposites. J Alloy Compd 793:526–532

    Article  CAS  Google Scholar 

  129. Quadir M, Wolz A, Hoffman M, Ferry M (2008) Influence of processing parameters on the bond toughness of roll-Bonded aluminium strip. Scr Mater 58:959–962

    Article  CAS  Google Scholar 

  130. Xing Z, Kang S, Kim H (2002) Microstructural evolution and mechanical properties of the AA8011 alloy during the accumulative roll-Bonding process. Metall Mater Trans A 33:1521–1530

    Article  Google Scholar 

  131. Kazakov NF (1985) A theory of diffusion bonding. In: Kazakov NF (ed) Diffusion bonding of materials, 1st edn. Pergamon, Turkey

    Google Scholar 

  132. Kazakov NF (1985) Principal bonding variables and recommended procedures for diffusion bonding in vacuum. In: Kazakov NF (ed) Diffusion Bonding of materials, 1st edn. Pergamon, Turkey

    Google Scholar 

  133. Salimi A, Borhani E, Emadoddin E (2017) Evaluation of mechanical properties and structure of Al-1100 composite reinforced with ZrO2 nanoparticles via accumulative Roll-Bonding. Trans Ind Inst Metal 70:989–995

    Article  CAS  Google Scholar 

  134. Zheng H, Wu R, Hou L (2021) Mathematical analysis and its experimental comparisons for the accumulative roll bonding (ARB) process with different superimposed layers. J MagnesAlloy 9:1741–1752

    CAS  Google Scholar 

  135. Nasresfahani MR, Shamanian M (2019) Characterization of Al1100-RHA composite developed by accumulative roll bonding. J Compos Mater 53:2047–2052

    Article  CAS  Google Scholar 

  136. Jamaati R, Toroghinejad MR (2010) High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes. Mater Des 31:4816–4822

    Article  CAS  Google Scholar 

  137. Toroghinejad JR, Edris N (2014) Hybrid composites produced by anodizing and accumulative roll bonding (ARB) processes. Ceramic Inter 40:1002735

    Article  Google Scholar 

  138. Yang D, Cizek P, Hodgson P (2010) Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Script Mater 62:321–324

    Article  CAS  Google Scholar 

  139. Jamaati R, Amirkhanlou S, Toroghinejad MR, Niroumand B (2011) Effect of particle size on microstructure and mechanical properties of composites produced by ARB process. Mater Sci Eng A 528:214–238

    Article  Google Scholar 

  140. Fathy A, Ibrahim D, Elkady O (2019) Evaluation of mechanical properties of 1050-Al reinforced with SiC particles via accumulative roll bonding process. J Comp Mater 53:209–218

    Article  CAS  Google Scholar 

  141. Naseri M, Hassani A, Tajally M (2016) Fabrication and characterization of Hybrid composite strips with homogeneously dispersed ceramic particles by severe plastic deformation. Ceram Inter 40:1002735

    Google Scholar 

  142. Rezayat M, Akbarzadeh A, Owhadi A (2012) Production of high strength Al–Al2O3 composite by accumulative roll bonding. Comp Part A 43:261–267

    Article  Google Scholar 

  143. Liu CY, Zhang B, Tang X (2014) Effects of TC4 foil on the microstructures and mechanical properties of accumulatively roll-bonded aluminum-based metal matrix composites. Mat Sci Eng A 615:367–372

    Article  Google Scholar 

  144. Liu CY, Jing R, Wang Q (2012) Fabrication of Al/Al3Mg2 composite by vacuum annealing and accumulative roll-bonding process. Mat Sci Eng: A 558:510–516

    Article  CAS  Google Scholar 

  145. Sekine H, Chent R (1995) A combined microstructure strengthening analysis of SiCp/Al metal matrix composites. Composites 26:18–38

    Article  Google Scholar 

  146. Pirgazi H, Akbarzadeh A, Petrov R (2008) Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater Sci Eng 497:13–28

    Article  Google Scholar 

  147. Alizadeh M, Talebian M (2012) Fabrication of Al/Cup composite by accumulative roll bonding process and investigation of mechanical properties. Mat Sci Eng A 558:331-337

    Article  Google Scholar 

  148. Roy S, Nataraj BR, Suwas S, Kumar S (2012) Accumulative roll bonding of aluminum alloys 2219/5086 laminates: Microstructural evolution and tensile properties. Mater Des 36:529–539

    Article  CAS  Google Scholar 

  149. Pirgazi H, Akbarzadeh A (2009) Role of second phase particles on microstructure and texture evolution of ARB processed aluminum sheets. Mat Sci Technol 25:625–631

    Article  CAS  Google Scholar 

  150. Reihanian M, Bagherpour E, Paydar MH (2013) On the achievement of uniform particle distribution in metal matrix composites fabricated by accumulative roll bonding. Mater Lett 91:59–62

    Article  CAS  Google Scholar 

  151. Lu C, Tieu K, Wexler D (2009) Significant enhancement of bond strength in the accumulative roll bonding process using nano-sized SiO2 particles. J Mater Process Technol 209:483–504

    Article  Google Scholar 

  152. Soltani MA, Jamaati R, Toroghinejad MR (2012) The influence of TiO2 nanoparticles on bond strength of cold roll bonded aluminum strips. Mater Sci Eng 550:367–374

    Article  CAS  Google Scholar 

  153. Mohammad S (2014) Application of composting and cross accumulative roll bonding processes for manufacturing high-strength, highly uniform, and ultra-fine structured Al/SiCp nanocomposite. Mater Sci Eng A 592:121–127

    Google Scholar 

  154. Mahdavian MM, Ghalandari L, Reihanian M (2013) Accumulative roll bonding of multilayered Cu/Zn/Al: An evaluation of microstructure and mechanical properties. Mater Sci Eng 579:991–1007

    Article  Google Scholar 

  155. Alam SN, Sharma N, Panda D (2018) Mechanical milling of Al and synthesis of in-situ Al2O3 particles by mechanical alloying of Al-CuO system. J Alloy Compd 753:799–812

    Article  CAS  Google Scholar 

  156. Roghani H, Borhani E (2022) Effect of concurrent accumulative roll bonding (ARB) process and various heat treatments on the microstructure, texture, and mechanical properties of AA1050 sheets. J Mater Res Technol 18:1295–1306

    Article  CAS  Google Scholar 

  157. Yust CS (1985) Tribology and wear. Inter Met Rev 30:141–154

    Article  CAS  Google Scholar 

  158. De Gee WJ (1979) Friction and wear as related to the composition, structure, and properties of metals. Inter Met Rev 24:57–67

    Article  Google Scholar 

  159. Dinaharan I, Vettivel SC, Balakrishnan M (2019) Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 magnesium matrix composites. J MagnesAlloy 7:155–165

    CAS  Google Scholar 

  160. Mandal A, Chakraborty M, Murty BS (2007) Effect of TiB2 particles on sliding wear behavior of Al–4Cu alloy. Wear 262:160–166

    Article  CAS  Google Scholar 

  161. Radhika N, Subramanian R (2013) Effect of reinforcement on wear behavior of aluminium hybrid composites. Tribol Mater Surf Interface 7:36–41

    Article  CAS  Google Scholar 

  162. Kumar BA, Dinaharan I, Murugan N (2022) Microstructural, Mechanical and Wear Properties of Friction Stir Welded AA6061/AlNp Composite Joints. J Mater Eng Perform 31:651–666

    Article  CAS  Google Scholar 

  163. Zhang SL, Zhao YT, Chen G (2008) Fabrication and dry sliding wear behavior of in situ Al–K2ZrF6–KBF4 composites reinforced by Al3Zr and ZrB2 particles. J Alloy Compd 450:189–192

    Article  Google Scholar 

  164. Alshmri F, Atkinson HV, Hainsworth SV (2014) Dry sliding wear of aluminum-high silicon hypereutectic alloys. Wear 313:106–116

    Article  CAS  Google Scholar 

  165. Baradeswaran A, Perumal AE (2013) Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos Part B 54:146–152

    Article  CAS  Google Scholar 

  166. Deuis RL, Subramanian C, Yellup JM (1997) Dry sliding wear of aluminum composites. A review. Comp Sci Technol 57:415–435

    Article  CAS  Google Scholar 

  167. Talachi AK, Eizadjou M, Manesh HD (2011) Wear characteristics of severely deformed aluminum sheets by accumulative roll bonding (ARB) process. Mater Character 62:12–21

    Article  CAS  Google Scholar 

  168. Kim YS, Ha J, Shin DH (2005) Sliding wear characteristics of ultrafine-Grained non-Strain-Hardening Aluminum-Magnesium alloys. Mater Sci Forum 475:401–404

    Article  Google Scholar 

  169. Eizadjou M, Manesh DH (2009) Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB process. J Alloys Compd 474:406–415

    Article  CAS  Google Scholar 

  170. Wilson S, Alpas AT (1997) Wear Mechanism Maps for Metal Matrix Composites. Wear 212:414–419

    Article  Google Scholar 

  171. Gahr KHZ (1987) Microstructure and wear of materials. Elsevier, Netherlands

    Google Scholar 

  172. Jamaati R, Naseri M, Toroghinejad MR (2014) Wear behavior of nanostructured Al/Al2O3 composite fabricated via accumulative roll bonding (ARB) process. Mater Des 59:540–549

    Article  CAS  Google Scholar 

  173. Barwell FT (1984) Advances in friction and wear mechanisms. Tribo Inter 17:299–307

    Article  Google Scholar 

  174. Quinn TF (1983) Review of oxidational wear: Part I: The origins of oxidational wear. Tribo Inter 16(5):257–271

    Article  CAS  Google Scholar 

  175. Moore MA (1974) A review of two-body abrasive wear. Wear 27:17

    Article  Google Scholar 

  176. Eliezer Z, Khanna VD, Amateau MF (1978) Wear mechanism in composites: a qualitative model. Wear 51:169–179

    Article  CAS  Google Scholar 

  177. Totten GE (1999) Friction, lubrication and wear technology. In: Totten GE (ed) Metals handbook, 10th edn. Ohio, ASM International

    Google Scholar 

  178. Mathew J, Mandal A, Deepak Kumar S (2017) Effect of semi-solid forging on microstructure and mechanical properties of in-situ cast Al-Cu-TiB2 composites. J Alloy Compd 712:460–467

    Article  CAS  Google Scholar 

  179. Babazadeh M, PourAsiabi H (2013) Wear characteristics of ADIs; a comprehensive review on mechanisms and effective parameters. J Basic Appl Sci Res 6:714–719

    Google Scholar 

  180. El A, Mahallawy N, Shehata FA, El A (2010) Wear properties of ECAP-processed ultrafine grained Al–Cu alloys. Mater Sci Eng A 527:3726–3732

    Article  Google Scholar 

  181. Gao N, Wang CT, Wood RJ (2012) Tribological properties of ultrafine-grained materials processed by severe plastic deformation. J Mater Sci 47:4779–4797

    Article  CAS  Google Scholar 

  182. Roghani H, Shams BE (2021) On the microstructure, texture and mechanical properties through heat treatment in Al–CuO nanocomposite fabricated by Accumulative Roll Bonding (ARB). Mater Sci Eng 828:142080

    Article  CAS  Google Scholar 

  183. Wulpi DJ (2013) Understanding how components fail. ASM International, Ohio

    Book  Google Scholar 

  184. Sivasankaran S, Ramkumar KR, Al-Mufadi FA (2021) Effect of TiB2/Gr hybrid reinforcements in Al 7075 matrix on sliding wear behavior analyzed by response surface methodology. Met Mater Int 27:1739–1755

    Article  CAS  Google Scholar 

  185. Hihara LH, Latamison RM (1993) Suppressing galvanic corrosion in graphite/ Aluminum metal-matrix composites. Corrosion Sci 34(4):655–665

    Article  CAS  Google Scholar 

  186. Ceschini L, Morri A, Rotundo F (2014) Forming of metal matrix composites. In: Comprehensive materials processing. Elsevier, pp 159–186

  187. Bruschi S, Cao J, Merklein M, Yanagimoto J (2021) Forming of metal-based composite parts. CIRP Ann 70(2):567–588

    Article  Google Scholar 

  188. Baptista RJS, Pragana JPM, Bragança IMF (2020) Joining aluminium profiles to composite sheets by additive manufacturing and forming. J Mater Process Technol 279:1165–1187

    Article  Google Scholar 

  189. Morovvati MR, Mollaei-Dariani B (2018) The formability investigation of CNT-reinforced aluminum nano-composite sheets manufactured by accumulative roll bonding. Int J Adv Manuf Technol 95:3523–3533

    Article  Google Scholar 

  190. Yoda R, Shibata K, Morimitsu T (2011) Formability of ultrafine-grained interstitial-free steel fabricated by accumulative roll-bonding and subsequent annealing. Scripta Mater 65:175–178

    Article  CAS  Google Scholar 

  191. Ramu G, Bauri R (2009) Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al–SiCp composites. Mater Des 30:3554–3559

    Article  Google Scholar 

  192. Chawla N, Deng X, Schnell DR (2006) Thermal expansion anisotropy in extruded SiC particle reinforced 2080 aluminum alloy matrix composites. Mat Sci Eng A 426:314–322

    Article  Google Scholar 

  193. Mitra R, Rao VC, Maiti R (2004) Stability and response to rolling of the interfaces in cast Al–SiCp and Al–Mg alloy-SiCp composites. Mat Sci Eng: A 379:391–400

    Article  Google Scholar 

  194. Deng KK, Wu K, Wang XJ (2010) Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures. Mater Sci Eng: A 527:1630–1635

    Article  Google Scholar 

  195. Amirkhanlou S, Rezaei MR, Niroumand B (2011) Refinement of microstructure and improvement of mechanical properties of Al/Al2O3 cast composite by accumulative roll bonding process. Mat Sci Eng: A 528:2548–2553

    Article  Google Scholar 

  196. Hashim J, Looney L, Hashmi MS (2002) Particle distribution in cast metal matrix composites-Part I. Mater Process Technol 123:251–257

    Article  CAS  Google Scholar 

  197. Cöcen Ü, Önel K (2002) Ductility and strength of extruded SiCp/aluminium-alloy composites. Comp Sci Technol 62:275–282

    Article  Google Scholar 

  198. Hansen N, Huang X, Ueji R (2004) Structure and strength after large strain deformation. Mat Sci Eng A 387:191–194

    Article  Google Scholar 

  199. Huang X, Kamikawa N, Hansen N (2008) Strengthening mechanisms in nanostructured aluminum. Mater Sci Eng 483:102–104

    Article  Google Scholar 

  200. Kazakov NF (1985) An outline of diffusion bonding in a vacuum. In: Kazakov NF (ed) Diffusion bonding of materials, 1st edn. Pergamon, Turkey

    Google Scholar 

  201. Kang CG, Kim NH, Kim BM (2000) The effect of die shape on the hot extrudability and mechanical properties of 6061 Al/Al2O3 composites. J Mater Process Technol 100:53–62

    Article  Google Scholar 

  202. Tham LM, Gupta M, Cheng L (2002) Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites. Mater Sci Eng 326:355–363

    Article  Google Scholar 

  203. Faraji G, Kim HS, Kashi HT (2018) Severe plastic deformation methods for sheets. Severe plastic deformation, 1st edn. Elsevier, Netherlands, pp 113–129

    Chapter  Google Scholar 

  204. Olugbade TO (2023) Review: Corrosion resistance performance of severely plastic deformed aluminium based alloys via different processing routes. Met Mater Int 29:2415–2443

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea grant funded by the Korean government (NRF-2021H1D3A2A02082660, NRF-2021R1A2C3006662, NRF-2022R1A5A1030054).

Author information

Authors and Affiliations

Authors

Contributions

KRR was involved in data curation, methodology and writing—original draft. ID was responsible for initiation, conceptualization, methodology, supervision and writing—reviewing and editing. NM and HSK took part in project management and supervision.

Corresponding authors

Correspondence to Isaac Dinaharan or Hyoung Seop Kim.

Ethics declarations

Conflict of interest

There are no conflicts between the authors or with the institution.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Ethical approval

Not applicable.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramkumar, K.R., Dinaharan, I., Murugan, N. et al. Development of aluminum matrix composites through accumulative roll bonding: a review. J Mater Sci 59, 8606–8649 (2024). https://doi.org/10.1007/s10853-024-09682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09682-6

Navigation