Skip to main content

Advertisement

Log in

Synergistic effect of Gd and Sr on the microstructure and mechanical properties of Al–Si–Mg alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al–Si–Mg alloys have received widespread application in communication, transportation and other fields on account of their attractive properties, e.g. superior castability, high ductility and excellent corrosion resistance. Comprehensive understanding of relationship between morphologies and mechanical performances under combined refiner-modifier condition is the prerequisite for the applications expansion. In this work, effect of Gd and Gd/Sr on the microstructure and mechanical properties of Al-9Si-0.4 Mg alloy was systematically studied. The results indicated that Gd had excellent refinement effect on α-Al but only partial modification on eutectic Si. Whereas simultaneous addition of Gd/Sr resulted in completely refined α-Al and modified eutectic Si. Growth of eutectic Si in untreated alloys show evidence of typical facet step growth mechanism. However, eutectic Si in Gd/Sr composite modified alloy mainly grew through impurity induce twinning mechanism and twin plane re-entrant edge mechanism, and facet step growth gradually weakened until disappearance. Based on these, both ultimate tensile strength (UTS) and elongation (El) of alloys were significantly improved and reasons were explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on request.

References

  1. Greer A, Bunn A, Tronche A et al (2000) Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B. Acta Mater 48(11):2823–2835

    Article  CAS  Google Scholar 

  2. Kang N, Zhang Y, Mansori El et al (2023) Laser powder bed fusion of a novel high strength quasicrystalline Al–Fe–Cr reinforced Al matrix composite. Adv Powder Mater 2(2):100108

    Article  Google Scholar 

  3. Shi Y, Liu L, Zhang L et al (2017) Effect of squeeze casting process on microstructures and flow stress behavior of Al-17. 5Si-4Cu-0.5 Mg alloy. J Iron Steel Res Int 24(9):957–965

    Article  Google Scholar 

  4. Gao Z, Li H, Lai Y et al (2013) Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum. Mater Sci Eng:A 580:92–98

    Article  CAS  Google Scholar 

  5. Fan Z, Gao F, Wang Y et al (2022) Effect of solutes on grain refinement. Prog Mater Sci 123:100809. https://doi.org/10.1016/j.pmatsci.2021.100809

    Article  CAS  Google Scholar 

  6. Gao J, Gu W, Zhang F et al (1974) Selective etching of Sr-modified and directionally solidified industrial Al–Si eutectic alloys for fabricating fibrous eutectic Si. Metals 2021:11

    Google Scholar 

  7. Shabestari S, Shahri F (2004) Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy. J Mater Sci 39:2023–2032

    Article  CAS  Google Scholar 

  8. Birol Y (2009) A novel Al-Ti-B alloy for grain refining Al–Si foundry alloys. J Alloy Compd 486(1–2):219–222

    Article  CAS  Google Scholar 

  9. Qiu D, Taylor J, Zhang M et al (2007) A mechanism for the poisoning effect of silicon on the grain refinement of Al–Si alloys. Acta Mater 55(4):1447–1456

    Article  CAS  Google Scholar 

  10. Chang L, Ding Y, Guo B et al (2022) Modification mechanism and tensile property of Al-9Si-0.4Mg-0.1Cu alloy. Mater Charact 184:111693. https://doi.org/10.1016/j.matchar.2021.111693

    Article  CAS  Google Scholar 

  11. Lee Y, Dahle A, John D et al (1999) The effect of grain refinement and silicon content on grain formation in hypoeutectic Al–Si alloys. Mater Sci Eng, A 259(1):43–52

    Article  Google Scholar 

  12. Liao H, Song W, Wang QG et al (2013) Effect of Sr addition on porosity formation in directionally solidified A356 alloy. Int J Cast Met Res 26:201–208

    Article  CAS  Google Scholar 

  13. Zhang C, Du Y, Liu S et al (2016) Thermal conductivity of Al–Cu–Mg–Si alloys: Experimental measurement and CALPHAD modeling. Thermochim Acta 635:8–16

    Article  Google Scholar 

  14. Yang C, Lee S, Lee C et al (2006) Effects of Sr and Sb modifiers on the sliding wear behavior of A357 alloy under varying pressure and speed conditions. Wear 261:1348–1358

    Article  CAS  Google Scholar 

  15. Day M, Hellawell A. (1968) The microstructure and crystallography of Aluminum-silicon eutectic alloys. In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 305(1483): 473–491.

  16. Dahle A, Nogita K, McDonald S et al (2001) Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels. Metall and Mater Trans A 32:949–960

    Article  Google Scholar 

  17. Afsharnaderi A, Lotfpour M, Mirzadeh H et al (2020) Enhanced mechanical properties of as-cast AZ91 magnesium alloy by combined RE-Sr addition and hot extrusion. Mater Sci Eng, A 792:139817. https://doi.org/10.1016/j.msea.2020.139817

    Article  CAS  Google Scholar 

  18. Chang C, Liao H, Yi L et al (2023) Achieving ultra-high strength and ductility in Mg–9Al–1Zn–0.5 Mn alloy via selective laser melting. Adv Powder Mater 2(2):100097. https://doi.org/10.1016/j.apmate.2022.100097

    Article  Google Scholar 

  19. Qi P, Li B, Wang T et al (2019) Effect of erbium on the microstructure and mechanical properties of semi-solid Al-7Si-0.4 Mg alloy. Adv Eng Mater 21:1801037. https://doi.org/10.1002/adem.201801037

    Article  CAS  Google Scholar 

  20. Wang T, Zhao Y, Chen Z et al (2015) Combining effects of TiB2 and La on the aging behavior of A356 alloy. Mater Sci Eng, A 644:425–430

    Article  CAS  Google Scholar 

  21. Mao G, Yan H, Zhu C et al (2019) The varied mechanisms of yttrium (Y) modifying a hypoeutectic Al–Si alloy under conditions of different cooling rates. J Alloy Compd 806:909–916

    Article  CAS  Google Scholar 

  22. Giovanni MD, Kaduk JA, Srirangam P (2019) Modification of Al-Si Alloys by Ce or Ce with Sr. JOM 71(1):426–434

    Article  Google Scholar 

  23. Kim M (2007) Electron back scattering diffraction (EBSD) analysis of hypereutectic Al− Si alloys modified by Sr and Sc. Met Mater Int 13:103–107

    Article  CAS  Google Scholar 

  24. Xu C, Wang F, Mudassar H et al (2017) Effect of Sc and Sr on the eutectic Si morphology and tensile properties of Al-Si-Mg alloy. J Mater Eng Perform 26(4):1605–1613

    Article  CAS  Google Scholar 

  25. Lu S, Hellawell A (1987) The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning. Metall Trans A 18:1721–1733

    Article  Google Scholar 

  26. Nogita K, McDonald S, Dahle A (2004) Eutectic modification of Al-Si alloys with rare earth metals. Mater Trans 45(2):323–326

    Article  CAS  Google Scholar 

  27. Zhang XG, Mei FQ, Zhang HY et al (2012) Effects of Gd and Y additions on microstructure and properties of Al–Zn–Mg–Cu–Zr alloys. Mater Sci Eng, A 552:230–235

    Article  CAS  Google Scholar 

  28. Wei J, Wang Q, Zhang L et al (2021) Effects of Gd addition on the microstructure and tensile properties of Mg–4Al–5RE alloy produced by three different casting methods. Acta Metall Sinica (English Lett) 34:1361–1374

    Article  CAS  Google Scholar 

  29. Kang H, Yoon Kim W et al (2007) Effective parameter for the selection of modifying agent for Al-Si alloy. Mater Sci Eng: A 449:334–337

    Article  Google Scholar 

  30. Shi Z, Wang Q, Shi Y et al (2015) Microstructure and mechanical properties of Gd-modified A356 aluminum alloys. J Rare Earths 33(9):1004–1009

    Article  CAS  Google Scholar 

  31. Liu W, Xiao W, Xu C et al (2017) Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy. Mater Sci Eng, A 693:93–100

    Article  CAS  Google Scholar 

  32. Van Dalen ME, Dunand DC, Seidman DN (2011) Microstructural evolution and creep properties of precipitation-strengthened Al–0.06 Sc–0.02 Gd and Al–0.06 Sc–0.02 Yb (at. %) alloys. Acta Mater 59(13):5224–5237

    Article  Google Scholar 

  33. Ceschini L, Morri A, Morri A et al (2009) Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy. Mater Des 30(10):4525–4531

    Article  CAS  Google Scholar 

  34. Li B, Wang H, Jie J et al (2011) Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5 Si–0.5 Mg alloy. Mater Des 32(3):1617–1622

    Article  CAS  Google Scholar 

  35. Qiu C, Miao S, Li X et al (2017) Synergistic effect of Sr and La on the microstructure and mechanical properties of A356.2 alloy. Mater Des 114:563–571

    Article  CAS  Google Scholar 

  36. Zhang Q, Zhang C, Han W (1981) The modification of Al-Si eutectic alloys with rare-earth elements. Acta Metall Sin 17(2):130–241

    CAS  Google Scholar 

  37. Shamsuzzoha M, Hogan LM (1986) The crystal morphology of fibrous silicon in strontium-modified Al-Si eutectic. Philos Mag A 54(4):459–476

    Article  CAS  Google Scholar 

  38. Barrirero J, Engstler M, Ghafoor N et al (2014) Comparison of segregations formed in unmodified and Sr-modified Al-Si alloys studied by atom probe tomography and transmission electron microscopy. J Alloy Compd 611(12):410–421

    Article  CAS  Google Scholar 

  39. Liang X, Wang Y, Wang L et al (2022) The effect of solution treatment on the Si particles’ morphology evolution and the thermal conductivity and tensile properties of Sb-modified Al-8Si-0.6 Mg alloys. Metals 12(3):377. https://doi.org/10.3390/met12030377

    Article  CAS  Google Scholar 

  40. Di Giovanni MT, de Menezes JTO, Cerri E et al (2020) Influence of microstructure and porosity on the fracture toughness of Al-Si-Mg alloy. J Market Res 9(2):1286–1295

    CAS  Google Scholar 

  41. Kobayashi T (2000) Strength and fracture of aluminum alloys. Mater Sci Eng A 280:8–16

    Article  Google Scholar 

  42. Sui Y, Wang Q, Liu T et al (2015) Influence of Gd content on microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0.8 Mg alloys. J Alloys Compd 644:228–235

    Article  CAS  Google Scholar 

  43. Chen F, Lu T, Pan Y (2020) Effects of grain refinement on tensile properties and precipitation kinetics of Al-Si-Mg alloys cast in sand molds. Metall and Mater Trans B 51:1933–1940

    Article  CAS  Google Scholar 

  44. Wagner R (1960) On the growth of germanium dendrites. Acta Metall 8:57–60

    Article  Google Scholar 

  45. Li JH, Albu M, Hofer F et al (2015) Solute adsorption and entrapment during eutectic Si growth in A-Si-based alloys. Acta Mater 83:187–202

    Article  CAS  Google Scholar 

  46. Wang Z, Zhang Q, Zhang M et al (2020) Effect of refinement and modification on microstructure, properties and eutectic silicon growth mechanism of cast A356 aluminum alloy. Rare Metal Mater Eng 49(8):2665–2673

    CAS  Google Scholar 

  47. Ying L, Chun C, Hong G et al (2022) Synergistic effects of Cr and Sr addition on the mechanical and corrosion properties of A3562 alloy. Mater Charact 191:1044–5803

    Google Scholar 

  48. M. G. Day, A. Hellawell, and P. B. Hirsch. (1968) The microstructure and crystallography of aluminum-silicon eutectic alloys. In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 305:473–491

  49. Wang W, Guo F, Gai Z et al (2018) The formation of nanoparticles and their competitive interaction with twins during eutectic Si growth. Materials (Basel) 11(8):1404. https://doi.org/10.3390/ma11081404

    Article  CAS  PubMed  Google Scholar 

  50. Nogita K, Drennan J, Dahle A (2003) Evaluation of silicon twinning in hypo-eutectic Al-Si alloys. Mater Trans 44(4):625–628

    Article  CAS  Google Scholar 

  51. Barrirero J, Pauly C, Engstler M et al (2019) Eutectic modification by ternary compound cluster formation in Al-Si alloys. Sci Rep 9(1):5506. https://doi.org/10.1038/s41598-019-41919-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujiwara K, Fukuda H, Usami N et al (2010) Growth mechanism of the Si⟨110⟩ faceted dendrite. Phys Rev B 81(22):224106. https://doi.org/10.1103/PhysRevB.81.224106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Present authors appreciate financial support provided by Key R&D Program of Hebei Province (No. 22351003D) and Provincial School Cooperation Fund of Hebei province.

Author information

Authors and Affiliations

Authors

Contributions

JD contributed to conceptualization, formal analysis, investigation, data curation, writing—original draft, and visualization. XX contributed to conceptualization, project administration, writing—review and editing, supervision, and funding acquisition. YW and JW done resources and investigation. WX and EZ helped in writing—review and editing. JD helped in funding acquisition, writing—review and editing, supervision, and project administration. YL helped in supervision and funding acquisition.

Corresponding authors

Correspondence to Xingchuan Xia or Jian Ding.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Ethical approval

Ethical approval is not applicable for this article.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Xia, X., Wang, Y. et al. Synergistic effect of Gd and Sr on the microstructure and mechanical properties of Al–Si–Mg alloy. J Mater Sci 59, 5607–5621 (2024). https://doi.org/10.1007/s10853-024-09523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09523-6

Navigation