Skip to main content
Log in

Effect of low-angle grain boundary and twin on precipitation mechanism in pre-rolled AZ91 magnesium alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low-angle grain boundary and twin significantly affect precipitation behavior. Twins were introduced into AZ91 magnesium alloys by pre-rolling. And then, aging treatment was carried out in pre-rolled AZ91 magnesium alloys to investigate the precipitation behavior. The results show that the low-angle grain boundary and the extension twin provide the nucleation position for second phase, while double twin with low-elastic strain energy is not favored for the segregation of Al atom, causing that the precipitate hardly nucleates. Second phase firstly precipitates in the low-angle grain boundary and the twin boundary, followed by precipitating inside the twin. The low-angle grain boundary-induced lath-shaped second phase is attributed to dislocation, while the twin-induced precipitate is mainly affected by dislocation and stacking fault. From thermodynamic perspective, the morphology of twin-induced precipitate firstly displays spherical shape and then grows into lath-like shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on request.

Code availability

Data will be made available on request.

References

  1. Chen X, Liu C, Wang Y, Jiang S, Han Z, Chen Z (2023) Formation of nanocrystalline AZ31B Mg alloys via cryogenic rotary swaging. J Magnes Alloys 11(5):1580–1591. https://doi.org/10.1016/j.jma.2021.11.021

    Article  CAS  Google Scholar 

  2. Li Y, Li F, Kang F, Du H, Chen Z (2023) Recent research and advances in extrusion forming of magnesium alloys: a review. J Alloys Compd 953:170080. https://doi.org/10.1016/j.jallcom.2023.170080

    Article  CAS  Google Scholar 

  3. Liu X, Yang H, Zhu B, Wu Y, Liu W, TANG C (2023) Unveiling the mechanical response and accommodation mechanism of pre-rolled AZ31 magnesium alloy under high-speed impact loading. J Magnes Alloys 10(4):1096–1108. https://doi.org/10.1016/j.jma.2021.07.030

    Article  CAS  Google Scholar 

  4. Lu M, Huang S, Luo S, He H (2020) Effect of pre-solution treatment on deformation behavior of AZ80-Ag magnesium alloy. J Mater Res Technol 9(5):10807–10818. https://doi.org/10.1016/j.jmrt.2020.07.058

    Article  CAS  Google Scholar 

  5. Cheng J, Ghosh S (2015) A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys. Int J Plast 67:148–170. https://doi.org/10.1016/j.ijplas.2014.10.005

    Article  CAS  Google Scholar 

  6. Barnett MR (2012) 3-Twinning and its role in wrought magnesium alloys. In: Advances in wrought magnesium alloys. Victoria, pp 105–143

    Chapter  Google Scholar 

  7. Song J, She J, Chen D, Pan F (2020) Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloys 8(1):1–41. https://doi.org/10.1016/j.jma.2020.02.003

    Article  CAS  Google Scholar 

  8. Lee BH, Park SH, Hong SG, Park KT, Lee CS (2011) Role of initial texture on the plastic anisotropy of Mg-3Al-1Zn alloy at various temperatures. Mater Sci Eng A 528(3):1162–1172. https://doi.org/10.1016/j.msea.2010.10.065

    Article  CAS  Google Scholar 

  9. Lu K (2016) Stability nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater 1(5):16019. https://doi.org/10.1038/natrevmats.2016.19

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Stanford N, Barnett MR (2009) Effect of particles on the formation of deformation twins in a magnesium-based alloy. Mater Sci Eng A 516(1–2):226–234. https://doi.org/10.1016/j.msea.2009.04.001

    Article  CAS  Google Scholar 

  11. Fu W, Wang R, Wu K, Kuang J, Zhang J, Liu G, Sun J (2019) The influences of multiscale second-phase particles on strength and ductility of cast Mg alloys. J Mater Sci 54(3):2628–2647. https://doi.org/10.1007/s10853-018-2980-2

    Article  ADS  CAS  Google Scholar 

  12. Stanford N, Geng J, Chun YB, Davies CHJ, Nie JF, Barnett MR (2012) Effect of plate-shaped particle distributions on the deformation behaviour of magnesium alloy AZ91 in tension and compression. Acta Mater 60(1):218–228. https://doi.org/10.1016/j.actamat.2011.10.001

    Article  ADS  CAS  Google Scholar 

  13. Wang C, Xin R, Li D, Song B, Liu Z, Liu Q (2017) Tailoring the microstructure and mechanical property of AZ80 alloys by multiple twinning and aging precipitation. Adv Eng Mater 19(11):1700332. https://doi.org/10.1002/adem.201700332

    Article  CAS  Google Scholar 

  14. Teng J, Gong X, Li Y, Nie Y (2018) Influence of aging on twin boundary strengthening in magnesium alloys. Mater Sci Eng A 715:137–143. https://doi.org/10.1016/j.msea.2017.12.110

    Article  CAS  Google Scholar 

  15. Liu F, Xin R, Wang C, Song B, Liu Q (2019) Regulating precipitate orientation in Mg-Al alloys by coupling twinning, aging and detwinning processes. Scr Mater 158:131–135. https://doi.org/10.1016/j.scriptamat.2018.08.049

    Article  CAS  Google Scholar 

  16. Kang YH, Huang ZH, Wang SC, Yan H, Chen RS, Huang JC (2020) Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy II: Aging at 250 and 300°C. J Magnes Alloys 8(1):103–110. https://doi.org/10.1016/j.jma.2019.11.012

    Article  CAS  Google Scholar 

  17. Song B, Wang C, Guo N, Pan H, Xin R (2017) Improving tensile and compressive properties of an extruded AZ91 rod by the combined use of torsion deformation and aging treatment. Mater 10(3):280. https://doi.org/10.3390/ma10030280

    Article  CAS  Google Scholar 

  18. Kim HY, Kim YJ, Park SH (2023) Acceleration of aging behavior and improvement of mechanical properties of extruded AZ80 alloy through (10–12) twinning. J Magnes Alloy 11(2):671–683. https://doi.org/10.1016/J.JMA.2021.09.008

    Article  CAS  Google Scholar 

  19. Wang C, Xin R, Li D, Song B, Wu M, Liu Q (2017) Enhancing the age-hardening response of rolled AZ80 alloy by pre-twinning deformation. Mater Sci Eng A 680:152–156. https://doi.org/10.1016/j.msea.2016.10.094

    Article  CAS  Google Scholar 

  20. Ye J, Lin X, Zhao T, Liu N, Xie H, Niu Y, Teng F (2016) Influence of pre-strain on the aging hardening effect of the Mg-9.02Zn-1.68Y alloy. Mater Sci Eng A 663:49–55. https://doi.org/10.1016/j.msea.2016.03.115

    Article  CAS  Google Scholar 

  21. Wang F, Agnew SR (2016) Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int J Plast 81:63–86. https://doi.org/10.1016/j.ijplas.2016.01.012

    Article  CAS  Google Scholar 

  22. Wang F, Hazeli K, Molodov KD et al (2018) Characteristic dislocation substructure in 10–12 twins in hexagonal metals. Scr Mater 143:81–85. https://doi.org/10.1016/j.scriptamat.2017.09.015

    Article  CAS  Google Scholar 

  23. Zhang J, Xi G, Wan X, Fang C (2017) The dislocation-twin interaction and evolution of twin boundary in AZ31 Mg alloy. Acta Mater 133:208–216. https://doi.org/10.1016/j.actamat.2017.05.034

    Article  ADS  CAS  Google Scholar 

  24. Shi G, Yuan J, Li T, Zhang K, Li X, Li Y, Ma M (2020) Enhanced precipitation strengthening of extruded Mg-8 wt%Al-0.5 wt% Zn (AZ80) magnesium alloy by extension twinning. Mater Sci Eng A 774:138906. https://doi.org/10.1016/j.msea.2019.138906

    Article  CAS  Google Scholar 

  25. Xie H, Huang Q, Bai J et al (2021) Nonsymmetrical segregation of solutes in periodic misfit dislocations separated tilt grain boundaries. Nano Lett 21:2870–2875. https://doi.org/10.1021/ACS.NANOLETT.0C05008

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Shi G, Zhang K, Li X, Li Y, Ma M, Yuan J, Zhang H (2023) Dislocation configuration evolution during extension twinning and its influence on precipitation behavior in AZ80 wrought magnesium alloy. J Magnes Alloys 11(7):2442–2457. https://doi.org/10.1016/j.jma.2021.08.032

    Article  CAS  Google Scholar 

  27. Gu X, Wang M, Shi Z, Chen L, Ping YANG (2018) Asymmetrical precipitation on the 10–12 twin boundary in the magnesium alloy. Mater Trans A 49(10):4446–4451. https://doi.org/10.1007/s11661-018-4863-1

    Article  CAS  Google Scholar 

  28. Tian X, Chen F, Jiang J et al (2022) Experimental analyses and numerical modeling of the microstructure evolution of aluminum alloy using an internal state variable plasticity-based approach coupled with the effects of second phase. Int J Plast 158:103416. https://doi.org/10.1016/j.ijplas.2022.103416

    Article  CAS  Google Scholar 

  29. Jo SM, Kim SD, Kim TH, Go YH, Yang CW, You BS, Kim YM (2018) Sequential precipitation behavior of Mg17Al12 and Mg2Sn in Mg-8Al-2Sn-1Zn alloys. J Alloys Compd 749:794–802. https://doi.org/10.1016/j.jallcom.2018.03.380

    Article  CAS  Google Scholar 

  30. Liu J, Zhang X, Lv W, Zhou Y, Fang D, Ding X, Sun J (2021) Microstructure and mechanical properties of Mg-2.0Gd-1.2Y-1.0Zn-0.2Zr alloy. Mater Int 27(7):1969–1979. https://doi.org/10.1007/s12540-020-00782-x

    Article  CAS  Google Scholar 

  31. Stefanovic P, Haataja M, Provatas N (2009) Phase field crystal study of deformation and plasticity in nanocrystalline materials. Phys Rev E 80(4):046107. https://doi.org/10.1103/PhysRevE.80.046107

    Article  ADS  CAS  Google Scholar 

  32. Cahn JW (1957) Nucleation on dislocations. Acta Metals 5(3):169–172. https://doi.org/10.1016/0001-6160(57)90021-4

    Article  CAS  Google Scholar 

  33. Liu C, Chen H, Wilson N, Nie J (2018) Twin-like fault in Mg-9.8 wt%Sn alloy. Scr Mater 155:89–93. https://doi.org/10.1016/j.scriptamat.2018.06.018

    Article  CAS  Google Scholar 

  34. Ando D, Koike J, Sutou Y (2010) Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys. Acta Mater 58(13):4316–4324. https://doi.org/10.1016/j.actamat.2010.03.044

    Article  ADS  CAS  Google Scholar 

  35. Liu B, Zhang Z, Liu F et al (2022) Rejuvenation of plasticity via deformation graining in magnesium. Nat Commun 13(1):1060. https://doi.org/10.1038/s41467-022-28688-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie H, Pan H, Bai J et al (2021) Twin boundary superstructures assembled by periodic segregation of solute atoms. Nano Lett 21(22):9642–9650. https://doi.org/10.1021/ACS.NANOLETT.1C03448

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Zhu Y, Liu F, Song B, Xin R (2020) Coupling pre-aging treatment and side-rolling to improve the mechanical properties of AZ80 alloys. Mater Sci Eng A 779:139158. https://doi.org/10.1016/j.msea.2020.139158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 52071139, U21A0130), the National Natural Science Foundation of Hunan (grant numbers 2023JJ30262, 2023JJ30252), the Research Foundation of Education Bureau of Hunan Province (grant number 21B0471), and National Natural Science Foundation of Chongqing (grant number 2023NSCQ-MSX4320)

Author information

Authors and Affiliations

Authors

Contributions

XL contributed to the formal analysis, data curation, writing—original draft and experimetnal design. QW was involved in the software, methodology and carry out measurements. BZ assisted in the conceptualization and writing—review and editing. WL contributed to the visualization and calculation. LL was involved in the writing—review and editing. CX assisted in the visualization. PG was involved in the methodology.

Corresponding author

Correspondence to Bi-wu Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wan, Qh., Zhu, Bw. et al. Effect of low-angle grain boundary and twin on precipitation mechanism in pre-rolled AZ91 magnesium alloy. J Mater Sci 59, 3662–3675 (2024). https://doi.org/10.1007/s10853-024-09400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09400-2

Navigation