Skip to main content
Log in

Synthesis, properties, and interface modification of carbon/aluminum composites for thermal management: a review

  • Lightweight Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon materials have excellent thermophysical properties, and different dimensions of carbon materials are attractive candidates for enhancing high-performance aluminum matrix composites for thermal management. This paper reviews the preparation processes of carbon/aluminum composite materials in various dimensions and summarizes the main factors affecting the thermal conductivity of carbon/aluminum composites from the perspectives of metal matrix, reinforcement, and interface. Finally, we summarize the experimental progress of interfacial modification of different carbon/aluminum composites and put forward the future research direction in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data and code availability

Data will be made available on request.

References

  1. Zhang F, Feng Y, Feng W (2020) Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater Sci Eng R-Rep 142:100580. https://doi.org/10.1016/j.mser.2020.100580

    Article  Google Scholar 

  2. Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang PY, Cahill DG, Lv B (2018) High thermal conductivity in cubic boron arsenide crystals. Science 361:579–581. https://doi.org/10.1126/science.aat8982

    Article  CAS  PubMed  Google Scholar 

  3. Pavlovsky M, de Haan SWH, Ferreira JA (2015) High-performance thermal management for high-power high-frequency transformers. EPE J 19:20–27. https://doi.org/10.1080/09398368.2009.11463713

    Article  Google Scholar 

  4. Li WQ, Zhang TY, Li BB, Xue ZR, Wang H, Zhang D (2023) Enhanced energy management performances of passive cooling, heat storage and thermoelectric generator by using phase change material saturated in metal foam. Int J Therm Sci 184:107869. https://doi.org/10.1016/j.ijthermalsci.2022.107869

    Article  Google Scholar 

  5. Zhou ZZ, Zhou XD, Peng Y, Li L, Cao JD, Yang LZ, Cao B (2021) Quantitative study on the thermal failure features of lithium iron phosphate batteries under varied heating powers. Appl Therm Eng 185:116346. https://doi.org/10.1016/j.applthermaleng.2020.116346

    Article  CAS  Google Scholar 

  6. Carlton H, Pense D, Huitink D (2020) Thermomechanical degradation of thermal interface materials: accelerated test development and reliability analysis. J Electron Packag 142:031112. https://doi.org/10.1115/1.4047099

    Article  CAS  Google Scholar 

  7. Schönfeld B, Sax CR (2018) Static atomic displacements in the near-surface region of the Invar alloy Fe-28 at.% Pt. Acta Mater 151:470–477. https://doi.org/10.1016/j.actamat.2018.03.047

    Article  CAS  Google Scholar 

  8. Ghotekar Y, Varma RK, Shah VM, Modi HM, Vora AP, Lal AK, Makwana BA (2023) Thermo-chemical Characterisation of Fe–Ni Alloys for Space Applications. Paper read at Advances in Material Science and Metallurgy, Singapore

    Book  Google Scholar 

  9. Song C, Yang Y, Liu Y, Luo Z, Yu JK (2015) Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting. J Adv Manuf Technol 78:885–893. https://doi.org/10.1007/s00170-014-6689-3

    Article  Google Scholar 

  10. Elsayed A, Li W, El Kady OA, Daoush WM, Olevsky EA, German RM (2015) Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering. J Alloys Compd 639:373–380. https://doi.org/10.1016/j.jallcom.2015.03.183

    Article  CAS  Google Scholar 

  11. Xie Z, Guo H, Zhang Z, Zhang X (2019) Thermal expansion behaviour and dimensional stability of Diamond/Cu composites with different diamond content. J Alloys Compd 797:122–130. https://doi.org/10.1016/j.jallcom.2019.05.077

    Article  CAS  Google Scholar 

  12. Wang P, Chen G, Li W, Li H, Ju B, Hussain M, Yang W, Wu G (2021) Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling. Int J Miner Metall Mater 28:1821–1827. https://doi.org/10.1007/s12613-020-2114-0

    Article  CAS  Google Scholar 

  13. Chen CY, Xie YC, Yan XC, Ahmed M, Lupoi R, Wang J, Ren ZM, Liao HL, Yin S (2020) Tribological properties of Al/diamond composites produced by cold spray additive manufacturing. Addit Manuf 36:101434. https://doi.org/10.1016/j.addma.2020.101434

    Article  CAS  Google Scholar 

  14. Jia SQ, Bolzoni L, Li T, Yang F (2021) Unveiling the interface characteristics and their influence on the heat transfer behavior of hot-forged Cu–Cr/Diamond composites. Carbon 172:390–401. https://doi.org/10.1016/j.carbon.2020.10.036

    Article  CAS  Google Scholar 

  15. Wang C, Li H, Chen M, Li Z, Tang L (2020) Microstructure and thermo-physical properties of Cu Ti double-layer coated diamond/Cu composites fabricated by spark plasma sintering. Diam Relat Mat 109:108041. https://doi.org/10.1016/j.diamond.2020.108041

    Article  CAS  Google Scholar 

  16. Wu X, Wan D, Zhang W, Song M, Peng K (2020) Constructing efficient heat transfer channels at the interface of Diamond/Cu composites. Compos Interfaces 28:625–635. https://doi.org/10.1080/09276440.2020.1795466

    Article  CAS  Google Scholar 

  17. Chamroune N, Delange F, Caillault N, Morvan F, Lu Y, Kawasaki A, Silvain J-F (2020) Synergetic effect of discontinuous carbon fibers and graphite flakes on thermo-mechanical properties of aluminum matrix composites fabricated by solid-liquid phase sintering. Met Mater Int 26:155–167. https://doi.org/10.1007/s12540-019-00324-0

    Article  CAS  Google Scholar 

  18. Hassanzadeh-Aghdam MK, Mahmoodi MJ, Kazempour MR (2018) The role of thermal residual stress on the yielding behavior of carbon nanotube-aluminum nanocomposites. Int J Mech Mater Des 14:263–275. https://doi.org/10.1007/s10999-017-9368-3

    Article  CAS  Google Scholar 

  19. Huang Y, Ouyang QB, Guo Q, Guo XW, Zhang GD, Zhang D (2016) Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications. Mater Des 90:508–515. https://doi.org/10.1016/j.matdes.2015.10.146

    Article  CAS  Google Scholar 

  20. Saadallah S, Cable A, Hamamda S, Chetehouna K, Sahli M, Boubertakh A, Revo S, Gascoin N (2018) Structural and thermal characterization of multiwall carbon nanotubes (MWCNTs)/aluminum (Al) nanocomposites. Compos Pt B-Eng 151:232–236. https://doi.org/10.1016/j.compositesb.2018.06.019

    Article  CAS  Google Scholar 

  21. Kurita H, Miyazaki T, Kawasaki A, Lu Y, Silvain J-F (2015) Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing. Compos Pt A-Appl Sci Manuf 73:125–131. https://doi.org/10.1016/j.compositesa.2015.03.013

    Article  CAS  Google Scholar 

  22. Edtmaier C, Segl J, Koos R, Schobel M, Feldbaumer C (2020) Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: effect of diamond surface termination and processing conditions. Diam Relat Mat 106:107842. https://doi.org/10.1016/j.diamond.2020.107842

    Article  CAS  Google Scholar 

  23. Fan TX, Liu Y, Yang KM, Song J, Zhang D (2019) Recent Progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites. Acta Metall Sin 55:16–32. https://doi.org/10.11900/0412.1961.2018.00509

    Article  CAS  Google Scholar 

  24. Ruch PW, Beffort O, Kleiner S, Weber L, Uggowitzer PJ (2006) Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol 66:2677–2685. https://doi.org/10.1016/j.compscitech.2006.03.016

    Article  CAS  Google Scholar 

  25. Ci LJ, Ryu ZY, Jin-Phillipp NY, Ruhle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54:5367–5375. https://doi.org/10.1016/j.actamat.2006.06.031

    Article  CAS  Google Scholar 

  26. Tan Z, Ji G, Addad A, Li Z, Silvain J-F, Zhang D (2016) Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: spark plasma sintering vs. vacuum hot pressing. Compos Pt A-Appl Sci Manuf 91:9–19. https://doi.org/10.1016/j.compositesa.2016.09.012

    Article  CAS  Google Scholar 

  27. Monje IE, Louis E, Molina JM (2012) Aluminum/diamond composites: a preparative method to characterize reactivity and selectivity at the interface. Scr Mater 66:789–792. https://doi.org/10.1016/j.scriptamat.2012.02.012

    Article  CAS  Google Scholar 

  28. Prieto R, Molina JM, Narciso J, Louis E (2008) Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scr Mater 59:11–14. https://doi.org/10.1016/j.scriptamat.2008.02.026

    Article  CAS  Google Scholar 

  29. Zhou C, Ji G, Chen Z, Wang M, Addad A, Schryvers D, Wang H (2014) Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications. Mater Des 63:719–728. https://doi.org/10.1016/j.matdes.2014.07.009

    Article  CAS  Google Scholar 

  30. Etter T, Schulz P, Weber M, Metz J, Wimmler M, Löffler JF, Uggowitzer PJ (2007) Aluminium carbide formation in interpenetrating graphite/aluminium composites. Mater Sci Eng A 448:1–6. https://doi.org/10.1016/j.msea.2006.11.088

    Article  CAS  Google Scholar 

  31. Monje IE, Louis E, Molina JM (2014) On critical aspects of infiltrated Al/diamond composites for thermal management: diamond quality versus processing conditions. Compos Pt A-Appl Sci Manuf 67:70–76. https://doi.org/10.1016/j.compositesa.2014.08.015

    Article  CAS  Google Scholar 

  32. Zhang L, Hou G, Zhai W, Ai Q, Feng J, Zhang L, Si P, Ci L (2018) Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles. J Alloys Compd 748:854–860. https://doi.org/10.1016/j.jallcom.2018.03.237

    Article  CAS  Google Scholar 

  33. Monachon C, Weber L (2013) Influence of diamond surface termination on thermal boundary conductance between Al and diamond. J Appl Phys 113:183504. https://doi.org/10.1063/1.4804061

    Article  CAS  Google Scholar 

  34. Guo C, He X, Ren S, Qu X (2016) Effect of (0–40) wt.% Si addition to Al on the thermal conductivity and thermal expansion of diamond/Al composites by pressure infiltration. J Alloys Compd 664:777–783. https://doi.org/10.1016/j.jallcom.2015.12.255

    Article  CAS  Google Scholar 

  35. Zhou H, Ran M, Li Y, Yin Z, Tang Y, Zhang W, Zheng W, Liu J (2021) Improvement of thermal conductivity of diamond/Al composites by optimization of liquid-solid separation process. J Mater Process Technol 297:117267. https://doi.org/10.1016/j.jmatprotec.2021.117267

    Article  CAS  Google Scholar 

  36. Che Z, Li J, Wang Q, Wang L, Zhang H, Zhang Y, Wang X, Wang J, Kim MJ (2018) The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites. Compos Pt A-Appl Sci Manuf 107:164–170. https://doi.org/10.1016/j.compositesa.2018.01.002

    Article  CAS  Google Scholar 

  37. Jia H, Fan JZ, Liu YQ, Zhao YH, Nie JH, Wei SH (2021) Interfacial structure of carbide-coated graphite/Al composites and its effect on thermal conductivity and strength. Materials 14:1721. https://doi.org/10.3390/ma14071721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xin L, Tian X, Yang W, Chen G, Qiao J, Hu F, Zhang Q, Wu G (2018) Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method. J Alloys Compd 763:305–313. https://doi.org/10.1016/j.jallcom.2018.05.310

    Article  CAS  Google Scholar 

  39. Ma S, Zhao N, Shi C, Liu E, He C, He F, Ma L (2017) Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl Surf Sci 402:372–383. https://doi.org/10.1016/j.apsusc.2017.01.078

    Article  CAS  Google Scholar 

  40. Kondakci E, Solak N (2022) Enhanced thermal conductivity and long-term stability of diamond/aluminum composites using SiC-coated diamond particles. J Mater Sci 57:3430–3440. https://doi.org/10.1007/s10853-021-06817-x

    Article  CAS  Google Scholar 

  41. Zhang H, Wu J, Zhang Y, Li J, Wang X (2015) Effect of metal matrix alloying on mechanical strength of diamond particle-reinforced aluminum composites. J Mater Eng Perform 24:2556–2562. https://doi.org/10.1007/s11665-015-1527-9

    Article  CAS  Google Scholar 

  42. Liu T, He X, Liu Q, Ren S, Kang Q, Zhang L, Qu X (2014) Effect of chromium carbide coating on thermal properties of short graphite fiber/Al composites. J Mater Sci 49:6705–6715. https://doi.org/10.1007/s10853-014-8272-6

    Article  CAS  Google Scholar 

  43. Molina-Jorda JM (2015) Design of composites for thermal management: aluminum reinforced with diamond-containing bimodal particle mixtures. Compos Pt A-Appl S 70:45–51. https://doi.org/10.1016/j.compositesa.2014.12.006

    Article  CAS  Google Scholar 

  44. Ma L, Zhang L, Zhao P, Hu N, Gong Z, Ye W, Wei Q, Zhou K, Yu Z, Zhang Y (2016) A new design of composites for thermal management: aluminium reinforced with continuous CVD diamond coated W spiral wires. Mater Des 101:109–116. https://doi.org/10.1016/j.matdes.2016.03.145

    Article  CAS  Google Scholar 

  45. Chen JK, Huang IS (2013) Thermal properties of aluminum-graphite composites by powder metallurgy. Compos Pt B-Eng 44:698–703. https://doi.org/10.1016/j.compositesb.2012.01.083

    Article  CAS  Google Scholar 

  46. Wang C, Bai H, Xue C, Tong X, Zhu Y, Jiang N (2016) On the influence of carbide coating on the thermal conductivity and flexural strength of X (X = SiC, TiC) coated graphite/Al composites. RSC Adv 6:107483–107490. https://doi.org/10.1039/C6RA21754K

    Article  CAS  Google Scholar 

  47. Huang Y, Su Y, Li S, Ouyang Q, Zhang G, Zhang L, Zhang D (2016) Fabrication of graphite film/aluminum composites by vacuum hot pressing: process optimization and thermal conductivity. Compos Pt B-Eng 107:43–50. https://doi.org/10.1016/j.compositesb.2016.09.051

    Article  CAS  Google Scholar 

  48. Tan ZQ, Li ZQ, Fan GL, Kai XZ, Ji G, Zhang LT, Zhang D (2013) Diamond/aluminum composites processed by vacuum hot pressing: microstructure characteristics and thermal properties. Diam Relat Mat 31:1–5. https://doi.org/10.1016/j.diamond.2012.10.008

    Article  CAS  Google Scholar 

  49. Yi LF, Yamamoto T, Onda T, Chen ZC (2020) Microstructure and thermal properties of nickel-coated carbon fibers/aluminum composites. J Compos Mater 54:2539–2548. https://doi.org/10.1177/0021998319899154

    Article  CAS  Google Scholar 

  50. Hutsch T, Schubert T, Weissgaerber T, Kieback B (2012) Graphite metal composites with tailored physical properties. Emerg Mater Res 1:107–114. https://doi.org/10.1680/emr.11.00021

    Article  CAS  Google Scholar 

  51. Oddone V, Segl J, Prakasam M, Hartmann MT, Silvain J-F, Edtmaier C, Reich S (2018) Isotropic thermal expansion in anisotropic thermal management composites filled with carbon fibres and graphite. J Mater Sci 53:10910–10919. https://doi.org/10.1007/s10853-018-2373-6

    Article  CAS  Google Scholar 

  52. Liu Y, Guo H, Han Y, Zhang X, Fan Y (2018) Preparation of high thermal-conductivity flake Graphite/Al by spark plasma sintering. Xiyou Jinshu/Chinese J Rare Metals 42:259–264. https://doi.org/10.13373/j.cnki.cjrm.XY16021801

    Article  Google Scholar 

  53. Mizuuchi K, Inoue K, Agari Y, Morisada Y, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y (2011) Processing of diamond particle dispersed aluminum matrix composites in continuous solid-liquid co-existent state by SPS and their thermal properties. Compos Pt B-Eng 42:825–831. https://doi.org/10.1016/j.compositesb.2011.01.012

    Article  CAS  Google Scholar 

  54. Chu K, Jia CC, Liang XB, Chen H (2010) Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. Int J Miner Metall Mater 17:234–240. https://doi.org/10.1007/s12613-010-0220-0

    Article  CAS  Google Scholar 

  55. Prieto R, Molina JM, Narciso J, Louis E (2011) Thermal conductivity of graphite flakes–SiC particles/metal composites. Compos Pt A-Appl Sci Manuf 42:1970–1977. https://doi.org/10.1016/j.compositesa.2011.08.022

    Article  CAS  Google Scholar 

  56. Jiang N, Novak JP, Fink RL, Ieee. (2010). Fabrication and Characterization of Carbon-Aluminum Thermal Management Composites. In: Paper read at 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Santa Clara, CA.

  57. Li WJ, Liu Y, Wu GH (2015) Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting. Carbon 95:545–551. https://doi.org/10.1016/j.carbon.2015.08.063

    Article  CAS  Google Scholar 

  58. Guo CY, He XB, Ren SB, Qu XH (2016) Thermal properties of diamond/Al composites by pressure infiltration: comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix. Rare Met 35:249–255. https://doi.org/10.1007/s12598-015-0672-5

    Article  CAS  Google Scholar 

  59. Wang PP, Xiu ZY, Jiang LT, Chen GQ, Lin X, Wu GH (2015) Enhanced thermal conductivity and flexural properties in squeeze casted diamond/aluminum composites by processing control. Mater Des 88:1347–1352. https://doi.org/10.1016/j.matdes.2015.09.048

    Article  CAS  Google Scholar 

  60. Yang Y, Huang Y, Wu H, Fu H, Zong M (2016) Interfacial characteristic, thermal conductivity, and modeling of graphite flakes/Si/Al composites fabricated by vacuum gas pressure infiltration. J Mater Res 31:1723–1731. https://doi.org/10.1557/jmr.2016.182

    Article  CAS  Google Scholar 

  61. Han X, Huang Y, Zhou S, Sun X, Peng X, Chen X (2018) Effects of graphene content on thermal and mechanical properties of chromium-coated graphite flakes/Si/Al composites. J Mater Sci: Mater Electron 29:4179–4189. https://doi.org/10.1007/s10854-017-8363-7

    Article  CAS  Google Scholar 

  62. Beffort O, Khalid FA, Weber L, Ruch P, Klotz UE, Meier S, Kleiner S (2006) Interface formation in infiltrated Al(Si)/diamond composites. Diam Relat Mat 15:1250–1260. https://doi.org/10.1016/j.diamond.2005.09.036

    Article  CAS  Google Scholar 

  63. Khalid FA, Beffort O, Klotz UE, Keller BA, Gasser P (2004) Microstructure and interfacial characteristics of aluminium-diamond composite materials. Diam Relat Mat 13:393–400. https://doi.org/10.1016/j.diamond.2003.11.095

    Article  CAS  Google Scholar 

  64. Zhang Y, Che Z, Li JW, Wu JH, Wang XT (2014) Study on diamond /Al composites prepared by gas pressure infiltration method for thermal management application. J Syn Crys 43:2241–2250

    CAS  Google Scholar 

  65. Wang TQ, Meng QS, Araby S, Yang G, Li PX, Cai R, Han SN, Wang W (2021) Non-oxidized graphene/metal composites by laser deposition additive manufacturing. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.160724

    Article  Google Scholar 

  66. Wang B, Yang F, Zhang HT, He P (2023) Microstructure and interface evolution of diamond/ Cu composites prepared via ultrasonic additive manufacturing (UAM). J Mater Res Technol 25:546–551. https://doi.org/10.1016/j.jmrt.2023.05.191

    Article  CAS  Google Scholar 

  67. Zhang AL, Li YX (2023) Thermal conductivity of aluminum alloys-a review. Materials. https://doi.org/10.3390/ma16082972

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu Y, Cui Y, Li WJ (2022) Predicted interfacial thermal conductance and thermal conductivity of graphite flakes/Al composites with different alloy composition. Int J Mater Res 113:1015–1024. https://doi.org/10.1515/ijmr-2021-8564

    Article  CAS  Google Scholar 

  69. Veillere A, Kurita H, Kawasaki A, Lu YF, Heintz JM, Silvain JF (2019) Aluminum/Carbon composites materials fabricated by the powder metallurgy process. Materials. https://doi.org/10.3390/ma12244030

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang CC, Chen GQ, Wang X, Zhang YH, Yang WS, Wu GH (2012) Effect of Mg content on the thermodynamics of interface reaction in Cf/Al composite. Metal Mater Trans A-Phys Metal Mater Sci 43A:2514–2519. https://doi.org/10.1007/s11661-012-1090-z

    Article  CAS  Google Scholar 

  71. Chang J, Zhang Q, Lin YF, Wu GH (2018) Layer by layer graphite film reinforced aluminum composites with an enhanced performance of thermal conduction in the thermal management applications. J Alloys Compd 742:601–609. https://doi.org/10.1016/j.jallcom.2018.01.332

    Article  CAS  Google Scholar 

  72. Wu JH, Zhang HL, Zhang Y, Li JW, Wang XT (2012) Effect of copper content on the thermal conductivity and thermal expansion of Al-Cu/diamond composites. Mater Des 39:87–92. https://doi.org/10.1016/j.matdes.2012.02.029

    Article  CAS  Google Scholar 

  73. Chamroune N, Mereib D, Delange F, Caillault N, Lu Y, Grosseau-Poussard J-L, Silvain J-F (2018) Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites. J Mater Sci 53:8180–8192. https://doi.org/10.1007/s10853-018-2139-1

    Article  CAS  Google Scholar 

  74. Li D, Wang CY, Su YS, Zhang D, Ouyang QB (2020) Governing the inclination angle of graphite flakes in the graphite Flake/Al composites by controlling the Al particle size via flake powder metallurgy. Acta Metall Sin 33:649–658. https://doi.org/10.1007/s40195-019-00994-0

    Article  CAS  Google Scholar 

  75. Ujah CO, Popoola API, Popoola OM, Aigbodion VS (2019) Enhanced tribology, thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor. J Mater Sci 54:14064–14073. https://doi.org/10.1007/s10853-019-03894-x

    Article  CAS  Google Scholar 

  76. Yarahmadi A, Semnani HM, Abdoos H (2022) Simultaneous effects of carbon nanotube content and diameter size on microstructure and mechanical properties of double pressed double sintered Al/Carbon nanotube nanocomposites. J Mater Eng Perform 31:7423–7435. https://doi.org/10.1007/s11665-022-06798-1

    Article  CAS  Google Scholar 

  77. Sharma M, Sharma V (2016) Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite. Int J Miner Metall Mater 23:222–233. https://doi.org/10.1007/s12613-016-1230-3

    Article  CAS  Google Scholar 

  78. Yang X, Zou T, Shi C, Liu E, He C, Zhao N (2016) Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Mater Sci Eng A 660:11–18. https://doi.org/10.1016/j.msea.2016.02.062

    Article  CAS  Google Scholar 

  79. Zhou C, Huang W, Chen Z, Ji G, Wang ML, Chen D, Wang HW (2015) In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment. Compos Pt B-Eng 70:256–262. https://doi.org/10.1016/J.COMPOSITESB.2014.11.018

    Article  CAS  Google Scholar 

  80. Yoshida K, Morigami H (2004) Thermal properties of diamond/copper composite material. Microelectron Reliab 44:303–308. https://doi.org/10.1016/s0026-2714(03)00215-4

    Article  CAS  Google Scholar 

  81. Lee MT, Chung CY, Yen SC, Lu CL, Lin SJ (2014) High thermal conductive diamond/Ag-Ti composites fabricated by low-cost cold pressing and vacuum liquid sintering techniques. Diam Relat Mat 44:95–99. https://doi.org/10.1016/j.diamond.2014.02.003

    Article  CAS  Google Scholar 

  82. Tan Z, Xiong D, Fan G, Chen Z, Guo Q, Guo C, Ji G, Li Z, Zhang D (2018) Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion. J Mater Sci 53:6602–6612. https://doi.org/10.1007/s10853-018-2024-y

    Article  CAS  Google Scholar 

  83. Yi LF, Yoshida N, Onda T, Chen ZC (2019) Effect of processing conditions on microstructure and thermal conductivity of hot-extruded aluminum/graphite composites. Mater Trans 60:136–143. https://doi.org/10.2320/matertrans.M2018220

    Article  CAS  Google Scholar 

  84. Yi LF, Noguchi K, Liu L, Otsu A, Onda T, Chen ZC (2023) Deformation behavior of graphite and its effect on microstructure and thermal properties of aluminum/graphite composites. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2022.167752

    Article  Google Scholar 

  85. Shen ZY, Ji G, Silvain JF (2020) From 1D to 2D arrangements of graphite flakes in an aluminium matrix composite: impact on thermal properties. Scr Mater 183:86–90. https://doi.org/10.1016/j.scriptamat.2020.03.022

    Article  CAS  Google Scholar 

  86. Edtmaier C, Weber L, Tavangar R (2008). Surface modification of diamonds in Diamond/Al-matrix composite. In: Paper read at 1st International Conference on New Materials for Extreme Environments, San Sebastian, Spain.

  87. Collins KC, Chen S, Chen G (2010) Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces. Appl Phys Lett 10(1063/1):3480413

    Google Scholar 

  88. Che ZF, Li JW, Wang LH, Qi YX, Zhang Y, Zhang HL, Wang XT, Wang JG, Kim MJ (2016) Effect of diamond surface chemistry and structure on the interfacial microstructure and properties of Al/diamond composites. RSC Adv 6:67252–67259. https://doi.org/10.1039/c6ra11905k

    Article  CAS  Google Scholar 

  89. Yang WL, Sang JQ, Zhou LP, Peng K, Zhu JJ, Li DY (2018) Overcoming selective interfacial bonding and enhancing thermal conductivity of diamond/aluminum composite by an ion bombardment pretreatment. Diam Relat Mat 81:127–132. https://doi.org/10.1016/j.diamond.2017.12.006

    Article  CAS  Google Scholar 

  90. Wei WF, Liao QH, Yang ZF, Li XB, Huang ZL, Ren JN, Yang Y, Wu GN (2022) Interfacial modification and performance enhancement of carbon matrix/aluminum composites. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2027.163877

    Article  Google Scholar 

  91. Bakshi SR, Agarwal A (2011) An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49:533–544. https://doi.org/10.1016/j.carbon.2010.09.054

    Article  CAS  Google Scholar 

  92. Kwon H, Park DH, Silvain JF, Kawasaki A (2010) Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol 70:546–550. https://doi.org/10.1016/j.compscitech.2009.11.025

    Article  CAS  Google Scholar 

  93. Zhu P, Zhang Q, Gou HS, Wang PP, Shao PZ, Kobayashi E, Wu GH (2021) First-principles calculation of diamond/Al interface properties and study of interface reaction. Acta Physica Sinica. https://doi.org/10.7498/aps.70.20210341

    Article  Google Scholar 

  94. Chen B, Shen J, Ye X, Imai H, Umeda J, Takahashi M, Kondoh K (2017) Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon 114:198–208. https://doi.org/10.1016/j.carbon.2016.12.013

    Article  CAS  Google Scholar 

  95. Guo B, Chen B, Zhang X, Cen X, Wang X, Song M, Ni S, Yi J, Shen T, Du Y (2018) Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon 135:224–235. https://doi.org/10.1016/j.carbon.2018.04.048

    Article  CAS  Google Scholar 

  96. Zhang Y, Li J, Zhao L, Wang X (2014) Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure. J Mater Sci 50:688–696. https://doi.org/10.1007/s10853-014-8628-y

    Article  CAS  Google Scholar 

  97. Li X, Yang W, Sang J, Zhu J, Fu L, Li D, Zhou L (2020) Low-temperature synthesizing SiC on diamond surface and its improving effects on thermal conductivity and stability of diamond/Al composites. J Alloys Compd 846:156258. https://doi.org/10.1016/j.jallcom.2020.156258

    Article  CAS  Google Scholar 

  98. Monje IE, Louis E, Molina JM (2016) Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant or oscillating temperature in a humid environment. J Mater Sci 51:8027–8036. https://doi.org/10.1007/s10853-016-0072-8

    Article  CAS  Google Scholar 

  99. Nam DH, Cha SI, Lee KM, Jang JH, Park HM, Lee JK, Hong SH (2016) Thermal properties of carbon nanotubes reinforced Aluminum-copper matrix nanocomposites. J Nanosci Nanotechnol 16:12013–12016. https://doi.org/10.1166/jnn.2016.13635

    Article  CAS  Google Scholar 

  100. Meng J, Huang J, Xu XL (2023) Thermophysical properties of Cu-coated carbon fibers reinforced aluminum matrix composites by stir casting. Carbon Lett. https://doi.org/10.1007/s42823-023-00555-7

    Article  Google Scholar 

  101. Si HL, Zhou QW, Zhou S, Zhang J, Liu WJ, Gao GH, Wang ZM, Hou PQ, Qu YD, Li GL (2023) Effect of interfacial stability on microstructure and properties of carbon fiber reinforced aluminum matrix composites. Interfaces, Surf. https://doi.org/10.1016/j.surfin.2023.102816

    Book  Google Scholar 

  102. Liu Y, Li WJ, Cui Y, Yang YK, Yang JP (2022) Theoretical analysis of interfacial design and thermal conductivity in graphite flakes/Al composites with various interfacial coatings. Sci Eng Compos Mater 29:500–507. https://doi.org/10.1515/secm-2022-0152

    Article  CAS  Google Scholar 

  103. Li T, Liu ZY, Zan YN, Liu XY, Wang WG, Wang D, Xiao BL, Ma ZY (2021) Effect of nanometer SiC coating on thermal conductivity and bending strength of graphite flake/6063Al composites. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.158023

    Article  Google Scholar 

  104. Han XP, Huang Y, Ding L, Gao XG, Xu ZP (2020) High thermal conductivity of GF@Cu@Ni/Si/Al composites reinforced with Cu and Ni co-deposited graphite flakes. Ceram Int 46:19191–19197. https://doi.org/10.1016/j.ceramint.2020.04.254

    Article  CAS  Google Scholar 

  105. Jiang D, Zhu X, Yu J (2020) Enhanced thermal conductivity and bending strength of graphite flakes/aluminum composites via graphite surface modification. J Wuhan Univ Technol-Mater Sci Ed 35:9–15. https://doi.org/10.1007/s11595-020-2220-x

    Article  CAS  Google Scholar 

  106. Huang Y, Su YS, Guo XW, Guo Q, Ouyang QB, Zhang GD, Zhang D (2017) Fabrication and thermal conductivity of copper coated graphite film/aluminum composites for effective thermal management. J Alloys Compd 711:22–30. https://doi.org/10.1016/j.jallcom.2017.03.233

    Article  CAS  Google Scholar 

  107. Chang J, Zhang Q, Lin YF, Zhou C, Yang WS, Yan LW, Wu GH (2018) Carbon nanotubes grown on graphite films as effective interface enhancement for an aluminum matrix laminated composite in thermal management applications. ACS Appl Mater Interfaces 10:38350–38358. https://doi.org/10.1021/acsami.8b12691

    Article  CAS  PubMed  Google Scholar 

  108. Chang J, Zhang Q, Lin YF, Shao PZ, Pei YY, Zhong SJ, Wu GH (2019) Thermal management applied laminar composites with SiC nanowires enhanced interface bonding strength and thermal conductivity. Nanoscale 11:15836–15845. https://doi.org/10.1039/c9nr04644e

    Article  CAS  PubMed  Google Scholar 

  109. Molina-Jorda JM (2015) Design of composites for thermal management: Aluminum reinforced with diamond-containing bimodal particle mixtures. Compos Pt A-Appl Sci Manuf 70:45–51. https://doi.org/10.1016/j.compositesa.2014.12.006

    Article  CAS  Google Scholar 

  110. Li N, Zhang YJ, Zhang Y, Wang XT, Wu HJ, Zhao LD, Zhang HL (2022) Realizing ultrahigh thermal conductivity in bimodal-diamond/Al composites via interface engineering. Mater Today Phys. https://doi.org/10.1016/j.mtphys.2022.100901

    Article  Google Scholar 

  111. Yang W, Chen G, Wang P, Qiao J, Hu F, Liu S, Zhang Q, Hussain M, Dong R, Wu G (2017) Enhanced thermal conductivity in Diamond/Aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method. J Alloys Compd 726:623–631. https://doi.org/10.1016/j.jallcom.2017.08.055

    Article  CAS  Google Scholar 

  112. Che Z, Wang Q, Wang L, Li J, Zhang H, Zhang Y, Wang X, Wang J, Kim MJ (2017) Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration. Compos Part B-Eng 113:285–290. https://doi.org/10.1016/j.compositesb.2017.01.047

    Article  CAS  Google Scholar 

  113. Li N, Wang L, Dai J, Wang X, Wang J, Kim MJ, Zhang H (2019) Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles. Diam Relat Mat 100:107565. https://doi.org/10.1016/j.diamond.2019.107565

    Article  CAS  Google Scholar 

  114. Dong ZY, Wang D, Wang WG, Xiao BL, Ma ZY (2023) Effect of nanometer WC coating on thermal conductivity of diamond/6061 composites. Acta Metall Sin 36:118–126. https://doi.org/10.1007/s40195-022-01450-2

    Article  CAS  Google Scholar 

  115. Zhu P, Zhang Q, Qu S, Wang Z, Gou H, Shil’ko SV, Kobayashi E, Wu G (2022) Effect of interface structure on thermal conductivity and stability of diamond/aluminum composites. Compos Pt A-Appl Sci Manuf 162:107161. https://doi.org/10.1016/j.compositesa.2022.107161

    Article  CAS  Google Scholar 

  116. Zhang L, Wei Q, An J, Ma L, Zhou K, Ye W, Yu Z, Gan X, Lin CT, Luo J (2020) Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management. Chem Eng J 380:122551. https://doi.org/10.1016/j.cej.2019.122551

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2022YFE0121400), the National Natural Science Foundation of China (No. 52071117, No. 52111530297), the Heilongjiang Provincial Science Fund for Distinguished Young Scholars (No. JQ2021E002), the Guangdong Basic and Applied Basic Research Foundation (No. 2022B1515120016), and the Belarusian Republican Foundation for Fundamental Research (No. T22KITG-003).

Funding

The Funding was provided by National Key Research and Development Program of China, No. 2022YFE0121400, Qiang Zhang, National Natural Science Foundation of China, No. 52071117,Qiang Zhang, No. 52111530297, Qiang Zhang, Science Fund for Distinguished Young Scholars of Heilongjiang Province, No. JQ2021E002, Qiang Zhang, the Guangdong Basic and Applied Basic Research Foundation, No. 2022B1515120016, Qiang Zhang, Belarusian Republican Foundation for Fundamental Research, No. T22KITG-003, Serge Shil’ko

Author information

Authors and Affiliations

Authors

Contributions

PZ was contributed to data curation, writing—original draft; YX was contributed to reference research, writing—review and editing; QZ was contributed to conceptualization, funding acquisition; XL was contributed to visualization, formal analysis; HG was contributed to supervision, data curation; SVS was contributed to writing—review and editing; GW was contributed to conceptualization, supervision.

Corresponding authors

Correspondence to Qiang Zhang or Gaohui Wu.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Xia, Y., Zhang, Q. et al. Synthesis, properties, and interface modification of carbon/aluminum composites for thermal management: a review. J Mater Sci 59, 9814–9839 (2024). https://doi.org/10.1007/s10853-023-09316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09316-3

Navigation