Skip to main content

Advertisement

Log in

Surface integrity, corrosion resistance, and low-temperature impact property of FH36 marine steel subjected to ultrasonic surface rolling process

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The service performance of FH36 marine steel subjected to ultrasonic surface rolling processing (USRP) in terms of surface integrity, corrosion resistance, and low-temperature impact property was investigated. The results demonstrated that the surface integrity of FH36 steel after USRP was reconstructed with the surface roughness declined to 0.117 μm by 88.7%, the average grain diameter refined to 2.77 µm by 31.8%, the surface hardness improved to 256 HV0.1 by 39.9%, and the compressive residual stress introduced up to − 172 MPa. Due to the reduced surface roughness, introduced work hardening, and compressive residual stress, the FH36 steel after USRP obtained the excellent corrosion resistance with the corrosion current density declined up to 35.3% and the polarization resistance raised up to 34.8%. While the FH36 steel treated by USRP showed a decrease in the low-temperature impact property, as a result of the reduced high angle grain boundaries, improved surface hardness and reduced surface roughness. Meanwhile, the grain refinement and compressive residual stress induced by USRP were favorable to the low-temperature impact property of FH36 steel.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ma H, Yang Y, He Z, Jia Z, Zhang Y (2018) Experimental study on constitutive relation of the high performance marine structural steel under extreme cyclic loads. Ocean Eng 168:204–215. https://doi.org/10.1016/j.oceaneng.2018.09.003

    Article  Google Scholar 

  2. Lei L, Zhu Q, Zhao Q, Yang M, Yang W, Zeng W, Zhao Y (2023) Low-temperature impact toughness and deformation mechanism of CT20 titanium alloy. Mater Charact 195:112504. https://doi.org/10.1016/j.matchar.2022.112504

    Article  CAS  Google Scholar 

  3. Rokilan M, Mahendran M (2020) Sub-zero temperature mechanical properties of cold-rolled steel sheets. Thin Wall Struct 154:106842. https://doi.org/10.1016/j.tws.2020.106842

    Article  Google Scholar 

  4. Yan JB, Dong X, Zhu JS (2019) Behaviours of stub steel tubular columns subjected to axial compression at low temperatures. Constr Build Mater 228:116788. https://doi.org/10.1016/j.conbuildmat.2019.116788

    Article  Google Scholar 

  5. Yan X, Huang X, Huang Y, Cui W (2016) Prediction of fatigue crack growth in a ship detail under wave-induced loading. Ocean Eng 113:246–254. https://doi.org/10.1016/j.oceaneng.2015.10.056

    Article  Google Scholar 

  6. Wang Y, Zhang Y, Song G, Niu W, Xu Z, Huang C (2020) Effect of shot peening on fatigue crack propagation of Ti6Al4V. Mater Today Commun 25:101430. https://doi.org/10.1016/j.mtcomm.2020.101430

    Article  CAS  Google Scholar 

  7. Zhang Q, Duan B, Zhang Z, Wang J, Si C (2021) Effect of ultrasonic shot peening on microstructure evolution and corrosion resistance of selective laser melted Ti–6Al–4V alloy. J Market Res 11:1090–1099. https://doi.org/10.1016/j.jmrt.2021.01.091

    Article  CAS  Google Scholar 

  8. Carneiro L, Wang X, Jiang Y (2020) Cyclic deformation and fatigue behavior of 316L stainless steel processed by surface mechanical rolling treatment. Int J Fatigue 134:105469. https://doi.org/10.1016/j.ijfatigue.2019.105469

    Article  CAS  Google Scholar 

  9. Wang C, Li R, Bi X, Yuan W, Gu J, Chen J, Yan M, Zhang Z (2023) Microstructure and wear resistance property of laser cladded CrCoNi coatings assisted by ultrasonic impact treatment. J Market Res 22:853–864. https://doi.org/10.1016/j.jmrt.2022.11.170

    Article  CAS  Google Scholar 

  10. Chen D, Liu J, Chen D, Li R, Ma C, Wang M, Dong P, Lang D, Hu Y, Liu K (2022) Influence of ultrasonic surface rolling process on surface characteristics and micro-mechanical properties of uranium. Mater Chem Phys 279:125741. https://doi.org/10.1016/j.matchemphys.2022.125741

    Article  CAS  Google Scholar 

  11. Lei L, Zhao Q, Zhao Y, Wu C, Huang S, Jia W, Zeng W (2022) Gradient nanostructure, phase transformation, amorphization and enhanced strength-plasticity synergy of pure titanium manufactured by ultrasonic surface rolling. J Mater Process Technol 299:117322. https://doi.org/10.1016/j.jmatprotec.2021.117322

    Article  CAS  Google Scholar 

  12. Wang Z, Gao C, Liu Z, Wang Z, Liu X, Wong K, Zhou Z, Xiao Z (2020) Investigation of microstructural evolution in a selective laser melted Ti6Al4V alloy induced by an ultrasonic surface rolling process. Mater Sci Eng A 772:138696. https://doi.org/10.1016/j.msea.2019.138696

    Article  CAS  Google Scholar 

  13. Xu Q, Zhou J, Jiang D, Yang X, Qiu Z (2023) Improved low-temperature mechanical properties of FH36 marine steel after ultrasonic surface rolling process. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2022.168401

    Article  Google Scholar 

  14. Xu Q, Jiang D, Zhou J, Qiu Z, Yang X (2023) Enhanced corrosion resistance of laser additive manufactured 316L stainless steel by ultrasonic surface rolling process. Surf Coat Technol 454:129187. https://doi.org/10.1016/j.surfcoat.2022.129187

    Article  CAS  Google Scholar 

  15. Han J, Wang C, Song Y, Liu Z, Sun J, Zhao J (2022) Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling. Int J Miner Metall Mater 29:1551–1558. https://doi.org/10.1007/s12613-021-2294-2

    Article  CAS  Google Scholar 

  16. Liu C, Liu D, Zhang X, Liu D, Ma A, Ao N, Xu X (2019) Improving fatigue performance of Ti–6Al–4V alloy via ultrasonic surface rolling process. J Mater Sci Technol 35:1555–1562. https://doi.org/10.1016/j.jmst.2019.03.036

    Article  CAS  Google Scholar 

  17. Dang J, Zhang H, An Q, Lian G, Li Y, Wang H, Chen M (2021) Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process. Surf Coat Technol 421:127380. https://doi.org/10.1016/j.surfcoat.2021.127380

    Article  CAS  Google Scholar 

  18. Xiong Z, Jiang Y, Yang M, Zhang Y, Lei L (2022) Achieving superior strength and ductility in 7075 aluminum alloy through the design of multi-gradient nanostructure by ultrasonic surface rolling and aging. J Alloys Compd 918:165669. https://doi.org/10.1016/j.jallcom.2022.165669

    Article  CAS  Google Scholar 

  19. Yang Y, Wei X, Long Z, Song C, Xie C, Lin J (2023) The Grey-Taguchi method analysis for processing parameters optimization and experimental assessment of 42CrMo steel treated by ultrasonic surface rolling. J Market Res 23:6244–6261. https://doi.org/10.1016/j.jmrt.2023.02.217

    Article  CAS  Google Scholar 

  20. Liu H, Zheng J, Guo Y, Zhu L (2020) Residual stresses in high-speed two-dimensional ultrasonic rolling 7050 aluminum alloy with thermal-mechanical coupling. Int J Mech Sci 186:105824. https://doi.org/10.1016/j.ijmecsci.2020.105824

    Article  Google Scholar 

  21. Narayanswamy S, Saha R, Bhattacharjee PP (2020) Strain dependent evolution of microstructure and texture in severely cold-rolled and annealed ultrafine pearlite. Mater Charact 169:110583. https://doi.org/10.1016/j.matchar.2020.110583

    Article  CAS  Google Scholar 

  22. Zhang J, Zhu Y, Xi X, Xiao Z (2022) Altered microstructure characteristics and enhanced corrosion resistance of UNS S32750 duplex stainless steel via ultrasonic surface rolling process. J Mater Process Technol 309:117750. https://doi.org/10.1016/j.jmatprotec.2022.117750

    Article  CAS  Google Scholar 

  23. Wang Y, Xiu S, Zhang S (2021) Microstructure evolution and crystallographic slip modes during grind hardening in TC21 titanium alloy. Surf Coat Technol 417:127211. https://doi.org/10.1016/j.surfcoat.2021.127211

    Article  CAS  Google Scholar 

  24. Shi H, Liu D, Jia T, Zhang X, Zhao W (2023) Effect of the ultrasonic surface rolling process and plasma electrolytic oxidation on the hot salt corrosion fatigue behavior of TC11 alloy. Int J Fatigue 168:107443. https://doi.org/10.1016/j.ijfatigue.2022.107443

    Article  CAS  Google Scholar 

  25. Xu Q, Yang X, Liu J, Jiang D, Qiu Z (2023) Improved corrosion resistance of 42CrMo4 steel by reconstructing surface integrity using ultrasonic surface rolling process. Mater Today Commun 35:105932. https://doi.org/10.1016/j.mtcomm.2023.105932

    Article  CAS  Google Scholar 

  26. Cao H, Wang K, Song S, Zhang X, Gao Q, Liu Y (2022) Corrosion behavior research and corrosion prediction of structural steel in marine engineering. Anti Corros Methods Mater 69:636–650. https://doi.org/10.1108/ACMM-06-2022-2664

    Article  CAS  Google Scholar 

  27. Liu X, Chen S, Zhang J, Yang G, Zhang Y, Wang T, Lei J (2023) Enhancement of the electrochemical corrosion resistance of Ti6Al4V alloy reinforced by nano- and micro-TiC particles through directed energy deposition. Corros Sci 221:111343. https://doi.org/10.1016/j.corsci.2023.111343

    Article  CAS  Google Scholar 

  28. Wang Y, Hao E, Zhao X, Xue Y, An Y, Zhou H (2022) Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater. J Mater Sci Technol 100:169–181. https://doi.org/10.1016/j.jmst.2021.06.005

    Article  CAS  Google Scholar 

  29. Qin P, Chen LY, Liu YJ, Jia Z, Liang SX, Zhao CH, Sun H, Zhang LC (2021) Corrosion and passivation behavior of laser powder bed fusion produced Ti–6Al–4V in static/dynamic NaCl solutions with different concentrations. Corros Sci 191:109728. https://doi.org/10.1016/j.corsci.2021.109728

    Article  CAS  Google Scholar 

  30. Deng CM, Xia DH, Zhang R, Behnamian Y, Hu W, Birbilis N (2023) On the localized corrosion of AA5083 in a simulated dynamic seawater/air interface—part 2: effects of wetting time. Corros Sci 221:111367. https://doi.org/10.1016/j.corsci.2023.111367

    Article  CAS  Google Scholar 

  31. Xia DH, Deng CM, Macdonald D, Jamali S, Mills D, Luo J-L, Strebl MG, Amiri M, Jin W, Song S, Hu W (2022) Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: a critical review. J Mater Sci Technol 112:151–183. https://doi.org/10.1016/j.jmst.2021.11.004

    Article  CAS  Google Scholar 

  32. Wang M, Ji Y, Xia DH, Zhou D, Zhu Y, Gao Z, Qin Z, Hu W (2024) Effect of substrate orientations on the electrochemical and localized corrosion behavior of a quad-layer Al alloy composite. J Mater Sci Technol 176:57–68. https://doi.org/10.1016/j.jmst.2023.09.002

    Article  Google Scholar 

  33. Rodríguez MA, Carranza RM (2011) Properties of the passive film on alloy 22 in chloride solutions obtained by electrochemical impedance. J Electrochem Soc 158:C221. https://doi.org/10.1149/1.3581034

    Article  CAS  Google Scholar 

  34. Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem 176:275–295. https://doi.org/10.1016/S0022-0728(84)80324-1

    Article  CAS  Google Scholar 

  35. Ji Y, Hu Q, Xia DH, Luo JL (2023) Corrosion susceptibility of passive films on 1060, 2024, and 5083 aluminum alloys: experimental study and first-principles calculations. J Electrochem Soc 170:041505. https://doi.org/10.1149/1945-7111/accab8

    Article  CAS  Google Scholar 

  36. Noh MH, Cerik BC, Han D, Choung J (2018) Lateral impact tests on FH32 grade steel stiffened plates at room and sub-zero temperatures. Int J Impact Eng 115:36–47. https://doi.org/10.1016/j.ijimpeng.2018.01.007

    Article  Google Scholar 

  37. Karanam MK, Gulivindala G, Chinthapenta VR (2021) Effect of anisotropy on the ductile fracture in metal reinforcements of brittle matrix composites. Theoret Appl Fract Mech 112:102923. https://doi.org/10.1016/j.tafmec.2021.102923

    Article  Google Scholar 

  38. Luo KY, Wang CY, Cui CY, Lu JZ, Lu YF (2019) Effects of coverage layer on the electrochemical corrosion behaviour of Mg–Al–Mn alloy subjected to massive laser shock peening treatment. J Alloys Compd 782:1058–1075. https://doi.org/10.1016/j.jallcom.2018.12.224

    Article  CAS  Google Scholar 

  39. Chui P, Sun K, Sun C, Yang X, Shan T (2011) Effect of surface nanocrystallization induced by fast multiple rotation rolling on hardness and corrosion behavior of 316L stainless steel. Appl Surf Sci 257:6787–6791. https://doi.org/10.1016/j.apsusc.2011.02.127

    Article  CAS  Google Scholar 

  40. Ye H, Sun X, Liu Y, Rao XX, Gu Q (2019) Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy. Surf Coat Technol 372:288–298. https://doi.org/10.1016/j.surfcoat.2019.05.035

    Article  CAS  Google Scholar 

  41. Wang C, Wang M, Shi J, Hui W, Dong H (2008) Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr Mater 58:492–495. https://doi.org/10.1016/j.scriptamat.2007.10.053

    Article  CAS  Google Scholar 

  42. Zhong Y, Xiao F, Zhang J, Shan Y, Wang W, Yang K (2006) In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel. Acta Mater 54:435–443. https://doi.org/10.1016/j.actamat.2005.09.015

    Article  CAS  Google Scholar 

  43. Wang HT, Tian Y, Ye QB, Misra RDK, Wang ZD, Wang GD (2019) Determining role of microstructure on crack arrest and propagation phenomenon in low-carbon microalloyed steel. Mater Sci Eng A 761:138009. https://doi.org/10.1016/j.msea.2019.06.019

    Article  CAS  Google Scholar 

  44. You Y, Shang C, Chen L, Subramanian S (2012) Investigation on the crystallography of reverted structure and its effect on the properties of low carbon steel. Mater Sci Eng A 546:111–118. https://doi.org/10.1016/j.msea.2012.03.038

    Article  CAS  Google Scholar 

  45. Wang L, Wang B, Zhou P (2018) Misorientation, grain boundary, texture and recrystallization study in X90 hot bend related to mechanical properties. Mater Sci Eng A 711:588–599. https://doi.org/10.1016/j.msea.2017.11.065

    Article  CAS  Google Scholar 

  46. Feng H, Fang QH, Zhang LC, Liu YW (2013) Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials. Int J Plast 42:50–64. https://doi.org/10.1016/j.ijplas.2012.09.015

    Article  CAS  Google Scholar 

  47. Xie P, Shen S, Wu C, Li J, Chen J (2021) Unusual relationship between impact toughness and grain size in a high-manganese steel. J Mater Sci Technol 89:122–132. https://doi.org/10.1016/j.jmst.2021.01.089

    Article  Google Scholar 

  48. Xu XN, Li HJ, Sun BZ, Tian Y, Ye QB (2023) Enhanced strength-ductility-toughness synergy in an HSLA steel with multi-gradient ultrafine grained structure by adopting a two-stage rolling coupling inter-pass ultra-fast cooling process. J Mater Process Technol 313:117832. https://doi.org/10.1016/j.jmatprotec.2022.117832

    Article  CAS  Google Scholar 

  49. Xu XN, Li XL, Gou XQ, Li Y, Ye QB, Tian Y (2023) Synergistic enhancement of strength, ductility, and toughness in a low carbon micro-alloy steel with an ultrafine-grained heterogeneous lamellar structure. Mater Sci Eng, A 878:145205. https://doi.org/10.1016/j.msea.2023.145205

    Article  CAS  Google Scholar 

  50. Ma A, Liu D, Zhang X, Liu Y, Zhao W, Wang R, He G (2022) Improving fatigue performance of TiZrN/TiZr-coated Ti–6Al–4V alloy by inducing a stabile compressive residual stress field. J Alloys Compd 925:166799. https://doi.org/10.1016/j.jallcom.2022.166799

    Article  CAS  Google Scholar 

  51. Li HY, Sun HL, Bowen P, Knott JF (2018) Effects of compressive residual stress on short fatigue crack growth in a nickel-based superalloy. Int J Fatigue 108:53–61. https://doi.org/10.1016/j.ijfatigue.2017.11.010

    Article  CAS  Google Scholar 

  52. Ao N, Liu D, Zhang X, Wu S (2023) Improved fretting fatigue mechanism of surface-strengthened Ti–6Al–4V alloy induced by ultrasonic surface rolling process. Int J Fatigue 170:107567. https://doi.org/10.1016/j.ijfatigue.2023.107567

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the National Natural Science Foundation of China (No. 52001048).

Author information

Authors and Affiliations

Authors

Contributions

QX was contributed investigation, writing-review and editing, and data curation. JL did writing-original draft preparation and investigation. JZ and ZQ were involved in investigation. XY and GL were performed data curation.

Corresponding author

Correspondence to Qingzhong Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Data availability

Data will be made available on request.

Ethical approval

Not applicable.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Liu, J., Zhou, J. et al. Surface integrity, corrosion resistance, and low-temperature impact property of FH36 marine steel subjected to ultrasonic surface rolling process. J Mater Sci 59, 1736–1752 (2024). https://doi.org/10.1007/s10853-023-09305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09305-6

Navigation