Skip to main content
Log in

High-throughput electrochemical strategy for synthesis of iron-based nanostructures for electrocatalytic water splitting

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrochemical water splitting has drawn significant attention for hydrogen generation as a carbon-free energy carrier for the construction of a net-zero society. To scale up water electrolyzers, enormous efforts have been made to the development of high-throughput synthesis of the electrocatalysts based on abundance and non-toxic elements for both oxygen and hydrogen evolution reactions. In this work, Fe-based nanostructures with a high Fe electrooxidation rate (up to 1 g cm−2 h−1) were prepared through a controlled and feasible electrosynthesis using pulse alternating current. The effect of electrolyte solution and post-annealing on composition/structural characteristics and electrochemical activity of the Fe-based nanostructures was depicted. The bi-phase sheet-like γ-Fe2O3/δ-FeOOH and cube-like γ-Fe2O3/α-FeOOH structures are formed in aqueous NaOH and NaCl solutions, respectively. The electrocatalytic activity of the synthesized structures was tailored by annealing up to 500 °C in air. The α-Fe2O3 catalyst synthesized in NaOH and NaCl demonstrated the overpotentials of 441 and 390 mV at 10 mA cm−2 in hydrogen and oxygen evolution reactions, respectively. This work provides new and deep insights into the high-throughput electrosynthesis of low-cost catalysts for hydrogen and oxygen production from water splitting. Therefore, this work focuses on the rational design and research of Fe-based catalysts for electrochemical water splitting.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support all plots within this paper are available from the corresponding author upon reasonable request.

References

  1. Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557. https://doi.org/10.1038/nmat3313

    Article  CAS  Google Scholar 

  2. Nguyen T-TH, Lee J, Bae J, Lim B (2018) Binary FeCo oxyhydroxide nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. Chem Eur J 24:4724–4728. https://doi.org/10.1002/chem.201800022

    Article  CAS  Google Scholar 

  3. Guo B, Huo H, Zhuang Q, Ren X, Wen X, Yang B, Huang X, Chang Q, Li S (2023) Iron oxyhydroxide: structure and applications in electrocatalytic oxygen evolution reaction. Adv Funct Mater 33:2300557. https://doi.org/10.1002/adfm.202300557

    Article  CAS  Google Scholar 

  4. Li C, Baek J-B (2020) Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 5:31–40. https://doi.org/10.1021/acsomega.9b03550

    Article  CAS  Google Scholar 

  5. Kumaravel S, Karthick K, Sankar SS, Karmakar A, Madhu R, Bera K, Kundu S (2021) Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting. Sustain Energy Fuels 5:6215–6268. https://doi.org/10.1039/D1SE01193F

    Article  CAS  Google Scholar 

  6. O’Mullane AP (2020) Creating active interfaces as a strategy to improve electrochemical water splitting reactions. J Phys Energy 2:041001. https://doi.org/10.1088/2515-7655/ab8c5f

    Article  CAS  Google Scholar 

  7. Li H, Zhou Q, Liu F, Zhang W, Tan Z, Zhou H, Huang Z, Jiao S, Kuang Y (2019) Biomimetic design of ultrathin edge-riched FeOOH@Carbon nanotubes as high-efficiency electrocatalysts for water splitting. Appl Catal B 255:117755. https://doi.org/10.1016/j.apcatb.2019.117755

    Article  CAS  Google Scholar 

  8. Zhang L, Fan Q, Li K, Zhang S, Ma X (2020) First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings. Sustain Energy Fuels 4:5417–5432. https://doi.org/10.1039/D0SE01087A

    Article  CAS  Google Scholar 

  9. Tian H, Zhang X-B, Li Y-P, He Q, Tian N-N, Wu S-H, Han X (2023) Differences in the oxidizing species on the surface of metal-doped ferrihydrite and hematite in the alkaline S(IV)-O2 solution. ACS Earth Space Chem 7:278–288. https://doi.org/10.1021/acsearthspacechem.2c00363

    Article  CAS  Google Scholar 

  10. Sayeed MA, Heron J, Love J, O’Mullane AP (2020) Activating iron based materials for overall electrochemical water splitting via the incorporation of noble metals. Chem Asian J 15:4339–4346. https://doi.org/10.1002/asia.202001113

    Article  CAS  Google Scholar 

  11. Wang K, Du H, He S, Liu L, Yang K, Sun J, Liu Y, Du Z, Xie L, Ai W, Huang W (2021) Kinetically controlled, scalable synthesis of γ-FeOOH nanosheet arrays on nickel foam toward efficient oxygen evolution: the key role of in-situ-generated γ-NiOOH. Adv Mater 33:2005587. https://doi.org/10.1002/adma.202005587

    Article  CAS  Google Scholar 

  12. Feng C, Faheem MB, Fu J, Xiao Y, Li C, Li Y (2020) Fe-based electrocatalysts for oxygen evolution reaction: progress and perspectives. ACS Catal 10:4019–4047. https://doi.org/10.1021/acscatal.9b05445

    Article  CAS  Google Scholar 

  13. Zhang Y, Li J, Kornienko N (2021) Strategies for heterogeneous small-molecule electrosynthesis. Cell Rep Phys Sci 2:100682. https://doi.org/10.1016/j.xcrp.2021.100682

    Article  CAS  Google Scholar 

  14. Sun Z-Q, Ma F-Y, Liu X-J, Wu H-H, Niu C-G, Su X-T, Liu J-M (2015) Large-scale synthesis and catalysis of oleic acid-coated Fe2O3 for co-liquefaction of coal and petroleum vacuum residues. Fuel Process Technol 139:173–177. https://doi.org/10.1016/j.fuproc.2015.07.025

    Article  CAS  Google Scholar 

  15. Hoque MdA, Ahmed MR, Rahman GT, Rahman MT, Islam MA, Khan MA, Hossain MK (2018) Fabrication and comparative study of magnetic Fe and α-Fe2O3 nanoparticles dispersed hybrid polymer (PVA + Chitosan) novel nanocomposite film. Results Phys 10:434–443. https://doi.org/10.1016/j.rinp.2018.06.010

    Article  Google Scholar 

  16. Gonzalez-Moragas L, Yu S-M, Murillo-Cremaes N, Laromaine A, Roig A (2015) Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition. Chem Eng J 281:87–95. https://doi.org/10.1016/j.cej.2015.06.066

    Article  CAS  Google Scholar 

  17. Ritter TG, Phakatkar AH, Rasul MG, Saray MT, Sorokina LV, Shokuhfar T, Gonçalves JM, Shahbazian-Yassar R (2022) Electrochemical synthesis of high entropy hydroxides and oxides boosted by hydrogen evolution reaction. Cell Rep Phys Sci 3:100847. https://doi.org/10.1016/j.xcrp.2022.100847

    Article  CAS  Google Scholar 

  18. Kromer ML, Monzó J, Lawrence MJ, Kolodziej A, Gossage ZT, Simpson BH, Morandi S, Yanson A, Rodríguez-López J, Rodríguez P (2017) High-throughput preparation of metal oxide nanocrystals by cathodic corrosion and their use as active photocatalysts. Langmuir 33:13295–13302. https://doi.org/10.1021/acs.langmuir.7b02465

    Article  CAS  Google Scholar 

  19. Garlyyev B, Watzele S, Fichtner J, Michalička J, Schökel A, Senyshyn A, Perego A, Pan D, El-Sayed HA, Macak JM, Atanassov P, Zenyuk IV, Bandarenka AS (2021) Electrochemical top-down synthesis of C-supported Pt nano-particles with controllable shape and size: mechanistic insights and application. Nano Res 14:2762–2769. https://doi.org/10.1007/s12274-020-3281-z

    Article  CAS  Google Scholar 

  20. Hang BT, Anh TT (2021) Controlled synthesis of various Fe2O3 morphologies as energy storage materials. Sci Rep 11:5185. https://doi.org/10.1038/s41598-021-84755-z

    Article  CAS  Google Scholar 

  21. Ulyankina A, Molodtsova T, Gorshenkov M, Leontyev I, Zhigunov D, Konstantinova E, Lastovina T, Tolasz J, Henych J, Licciardello N, Cuniberti G, Smirnova N (2021) Photocatalytic degradation of ciprofloxacin in water at nano-ZnO prepared by pulse alternating current electrochemical synthesis. J Water Process Eng 40:101809. https://doi.org/10.1016/j.jwpe.2020.101809

    Article  Google Scholar 

  22. Ulyankina A, Tsarenko A, Molodtsova T, Yatsenko A, Gorshenkov M, Kaichev V, Kuriganova A, Smirnova N (2023) Tungsten oxide nanopowders: pulse alternating current electrosynthesis, structure optimization and performance in a flow photocatalytic fuel cell. J Mater Sci 58:11187–11197. https://doi.org/10.1007/s10853-023-08697-9

    Article  CAS  Google Scholar 

  23. Molodtsova T, Gorshenkov M, Kolesnikov E, Leontyev I, Kaichev V, Zhigunov D, Faddeev N, Kuriganova A, Smirnova N (2023) Fabrication of nano-In2O3 phase junction by pulse alternating current synthesis for enhanced photoelectrochemical performance: unravelling the role of synthetic conditions. Ceram Int 49:10986–10992. https://doi.org/10.1016/j.ceramint.2022.11.293

    Article  CAS  Google Scholar 

  24. Molodtsova T, Gorshenkov M, Saliev A, Vanyushin V, Goncharov I, Smirnova N (2021) One-step synthesis of γ-Fe2O3/Fe3O4 nanocomposite for sensitive electrochemical detection of hydrogen peroxide. Electrochim Acta 370:137723. https://doi.org/10.1016/j.electacta.2021.137723

    Article  CAS  Google Scholar 

  25. Molodtsova T, Gorshenkov M, Kubrin S, Saraev A, Ulyankina A, Smirnova N (2022) One-step access to bifunctional γ-Fe2O3/δ-FeOOH electrocatalyst for oxygen reduction reaction and acetaminophen sensing. J Taiwan Inst Chem Eng 140:104569. https://doi.org/10.1016/j.jtice.2022.104569

    Article  CAS  Google Scholar 

  26. Wang Y, Fan T, Li Y, Wu Z, Liu C (2024) A controllable fabrication strategy of anodic oxides film with dense, nano-porous and open-top ordered porous arrays morphology on 304 stainless steel in fluoride-based ethylene glycol electrolyte. Surf Interfaces 44:103601. https://doi.org/10.1016/j.surfin.2023.103601

    Article  CAS  Google Scholar 

  27. Kim G, Park YS, Yang J, Jang MJ, Jeong J, Lee J-H, Park H-S, Park Y, Choi SM, Lee J (2021) Effects of annealing temperature on the oxygen evolution reaction activity of copper-cobalt oxide nanosheets. Nanomaterials 11:657. https://doi.org/10.3390/nano11030657

    Article  CAS  Google Scholar 

  28. ShajaripourJaberi SY, Ghaffarinejad A, Khajehsaeidi Z (2021) The effect of annealing temperature, reaction time, and cobalt precursor on the structural properties and catalytic performance of CoS2 for hydrogen evolution reaction. Int J Hydrog Energy 46:3922–3932. https://doi.org/10.1016/j.ijhydene.2020.10.224

    Article  CAS  Google Scholar 

  29. Xiong F, Lv F, Tang C, Zhang P, Tan S, An Q, Guo S, Mai L (2020) In situ construction of amorphous hierarchical iron oxyhydroxide nanotubes via selective dissolution-regrowth strategy for enhanced lithium storage. Sci China Mater 63:1993–2001. https://doi.org/10.1007/s40843-020-1337-5

    Article  CAS  Google Scholar 

  30. Bellot-Gurlet L, Neff D, Réguer S, Monnier J, Saheb M, Dillmann P (2009) Raman studies of corrosion layers formed on archaeological irons in various media. J Nano Res 8:147–156. https://doi.org/10.4028/www.scientific.net/JNanoR.8.147

    Article  CAS  Google Scholar 

  31. Schwaminger SP, Fraga-García P, Selbach F, Hein FG, Fuß EC, Surya R, Roth H-C, Blank-Shim SA, Wagner FE, Heissler S, Berensmeier S (2017) Bio-nano interactions: cellulase on iron oxide nanoparticle surfaces. Adsorption 23:281–292. https://doi.org/10.1007/s10450-016-9849-y

    Article  CAS  Google Scholar 

  32. Testa-Anta M, Ramos-Docampo MA, Comesaña-Hermo M, Rivas-Murias B, Salgueiriño V (2019) Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications. Nanoscale Adv 1:2086–2103. https://doi.org/10.1039/C9NA00064J

    Article  CAS  Google Scholar 

  33. Kim EH, Lee HS, Kwak BK, Kim B-K (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330. https://doi.org/10.1016/j.jmmm.2004.11.093

    Article  CAS  Google Scholar 

  34. Li F, Du J, Li X, Shen J, Wang Y, Zhu Y, Sun L (2018) Integration of FeOOH and zeolitic imidazolate framework-derived nanoporous carbon as an efficient electrocatalyst for water oxidation. Adv Energy Mater 8:1702598. https://doi.org/10.1002/aenm.201702598

    Article  CAS  Google Scholar 

  35. Ji X, Cheng C, Zang Z, Li L, Li X, Cheng Y, Yang X, Yu X, Lu Z, Zhang X, Liu H (2020) Ultrathin and porous δ-FeOOH modified Ni3S2 3D heterostructure nanosheets with excellent alkaline overall water splitting performance. J Mater Chem A Mater 8:21199–21207. https://doi.org/10.1039/D0TA07676G

    Article  CAS  Google Scholar 

  36. Zou J, Peleckis G, Lee C-Y, Wallace GG (2019) Facile electrochemical synthesis of ultrathin iron oxyhydroxide nanosheets for the oxygen evolution reaction. Chem Commun 55:8808–8811. https://doi.org/10.1039/C9CC02941A

    Article  CAS  Google Scholar 

  37. Cao D, Li H, Pan L, Li J, Wang X, Jing P, Cheng X, Wang W, Wang J, Liu Q (2016) High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach. Sci Rep 6:32360. https://doi.org/10.1038/srep32360

    Article  CAS  Google Scholar 

  38. Liu B, Wang Y, Peng H-Q, Yang R, Jiang Z, Zhou X, Lee C-S, Zhao H, Zhang W (2018) Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv Mater 30:1803144. https://doi.org/10.1002/adma.201803144

    Article  CAS  Google Scholar 

  39. Chernova E, Botvin V, Galstenkova M, Mukhortova Y, Wagner D, Gerasimov E, Surmeneva M, Kholkin A, Surmenev R (2022) A comprehensive study of synthesis and analysis of anisotropic iron oxide and oxyhydroxide nanoparticles. Nanomaterials 12:4321. https://doi.org/10.3390/nano12234321

    Article  CAS  Google Scholar 

  40. Zhong L, Frandsen C, Mørup S, Hu Y, Pan C, Cleemann LN, Jensen JO, Li Q (2018) 57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction. Appl Catal B 221:406–412. https://doi.org/10.1016/j.apcatb.2017.09.014

    Article  CAS  Google Scholar 

  41. De Grave E, BarreroMeneses C, Vandenberghe R, Costa G, San E (2002) Mössbauer spectra of α- and γ-polymorphs of FeOOH and Fe2O3: effects of poor crystallinity and of Al-for-Fe substitution. Clay Miner 37:591–606. https://doi.org/10.1180/0009855023740062

    Article  CAS  Google Scholar 

  42. Viswanathan B, Techniques NDT (2001) Positron annihilation and Mössbauer techniques. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 6027–6029. https://doi.org/10.1016/B0-08-043152-6/01062-7

    Chapter  Google Scholar 

  43. Kuchma EA, Zolotukhin PV, Belanova AA, Soldatov MA, Kozakov AT, Kubrin SP, Polozhentsev OE, Medvedev PV, Soldatov AV (2022) Effect of synthesis conditions on local atomic structure and properties of low-toxic maghemite nanoparticles for local magnetic hyperthermia in oncology. J Nanopart Res 24:25. https://doi.org/10.1007/s11051-021-05393-0

    Article  CAS  Google Scholar 

  44. Oh SJ, Cook DC, Townsend HE (1998) Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact 112:59–66. https://doi.org/10.1023/A:1011076308501

    Article  CAS  Google Scholar 

  45. de Grave E, Vandenberghe RE (1986) 57Fe Mössbauer effect study of well-crystallized goethite (α-FeOOH). Hyperfine Interact 28:643–646. https://doi.org/10.1007/BF02061530

    Article  Google Scholar 

  46. Morin FJ (1950) Magnetic susceptibility of α Fe2O3 and α Fe2O3 with added titanium. Phys Rev 78:819–820. https://doi.org/10.1103/PhysRev.78.819.2

    Article  CAS  Google Scholar 

  47. Özdemir Ö, Dunlop DJ, Berquó TS (2008) Morin transition in hematite: size dependence and thermal hysteresis. Geochem Geophy Geosyst. https://doi.org/10.1029/2008GC002110

    Article  Google Scholar 

  48. Chuev MA, Mishchenko IN, Kubrin SP, Lastovina TA (2017) Novel insight into the effect of disappearance of the Morin transition in hematite nanoparticles. JETP Lett 105:700–705. https://doi.org/10.1134/S0021364017110042

    Article  CAS  Google Scholar 

  49. Mishchenko I, Chuev M, Kubrin S, Lastovina T, Polyakov V, Soldatov A (2018) Continual model of magnetic dynamics for antiferromagnetic particles in analyzing size effects on Morin transition in hematite nanoparticles. J Nanopart Res 20:141. https://doi.org/10.1007/s11051-018-4248-9

    Article  CAS  Google Scholar 

  50. Miao H, Li J, Lin Y, Liu X, Zhang Q, Fu J (2011) Characterization of γ-Fe2O3 nanoparticles prepared by transformation of α-FeOOH. Chin Sci Bull 56:2383–2388. https://doi.org/10.1007/s11434-011-4559-z

    Article  CAS  Google Scholar 

  51. Delgado D, Hefter G, Minakshi M (2013) Hydrogen generation. In: Ferreira G (ed) Alternative energies: updates on progress. Springer, Berlin, Heidelberg, pp 141–161. https://doi.org/10.1007/978-3-642-40680-5_7

    Chapter  Google Scholar 

  52. Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A Mater 3:14942–14962. https://doi.org/10.1039/C5TA02974K

    Article  CAS  Google Scholar 

  53. Suryanto BHR, Wang Y, Hocking RK, Adamson W, Zhao C (2019) Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat Commun 10:5599. https://doi.org/10.1038/s41467-019-13415-8

    Article  CAS  Google Scholar 

  54. Oener SZ, Bergmann A, Cuenya BR (2023) Designing active oxides for a durable oxygen evolution reaction. Nat Synth. https://doi.org/10.1038/s44160-023-00376-6

    Article  Google Scholar 

  55. Al-Naggar AH, Shinde NM, Kim J-S, Mane RS (2023) Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord Chem Rev 474:214864. https://doi.org/10.1016/j.ccr.2022.214864

    Article  CAS  Google Scholar 

  56. Wang Z, Goddard WA, Xiao H (2023) Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides. Nat Commun 14:4228. https://doi.org/10.1038/s41467-023-40011-8

    Article  CAS  Google Scholar 

  57. Wu H, Yang T, Du Y, Shen L, Ho GW (2018) Identification of facet-governing reactivity in hematite for oxygen evolution. Adv Mater 30:1804341. https://doi.org/10.1002/adma.201804341

    Article  CAS  Google Scholar 

  58. Zhuang Z, Giles SA, Jenness GR, Abbasi R, Chen X, Wang B, Vlachos DG, Yan Y (2021) Oxygen evolution on iron oxide nanoparticles: the impact of crystallinity and size on the overpotential. J Electrochem Soc 168:034518. https://doi.org/10.1149/1945-7111/abef47

    Article  CAS  Google Scholar 

  59. Ali RN, Naz H, Zhu X, Xiang J, Hu G, Xiang B (2019) Synthesis, characterization and applications of pH controlled Fe2O3 nanoparticles for electrocatalytic hydrogen evolution reaction. Mater Res Express 6:025516. https://doi.org/10.1088/2053-1591/aaf0dd

    Article  CAS  Google Scholar 

  60. Martindale BCM, Reisner E (2016) Bi-functional iron-only electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration. Adv Energy Mater 6:1502095. https://doi.org/10.1002/aenm.201502095

    Article  CAS  Google Scholar 

  61. Fan X, Liu Y, Chen S, Shi J, Wang J, Fan A, Zan W, Li S, Goddard WA, Zhang X-M (2018) Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting. Nat Commun 9:1809. https://doi.org/10.1038/s41467-018-04248-y

    Article  CAS  Google Scholar 

  62. Chakraborty B, Beltrán-Suito R, Hausmann JN, Garai S, Driess M, Menezes PW (2020) Enabling iron-based highly effective electrochemical water-splitting and selective oxygenation of organic substrates through in situ surface modification of intermetallic iron stannide precatalyst. Adv Energy Mater 10:2001377. https://doi.org/10.1002/aenm.202001377

    Article  CAS  Google Scholar 

  63. Yang H, Gong L, Wang H, Dong C, Wang J, Qi K, Liu H, Guo X, Xia BY (2020) Preparation of nickel–iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat Commun 11:5075. https://doi.org/10.1038/s41467-020-18891-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The XPS studies are performed using the equipment of the Shared Research Center “National Center of Catalyst Research”. The TEM study was carried out on the equipment of the Center Collective Use “Materials Science and Metallurgy”.

Funding

The electrochemical synthesis and structure optimization of the materials were funded by Russian Science Foundation (№ 23-79-10219). Electrochemical study has been supported by the Ministry of Science and Higher Education of the Russian Federation (№ 075-03-2021-016/4) at the Laboratory “Novel composite and functional materials with specific properties” within the framework of National Project “Science and Universities”.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was analyzed TM and AU; investigation was conducted by TM, MG, SK, and VK; methodology was prepared by TM and AU; writing—original draft were drafted byTM; writing—review & editing were done by AU and NS; funding acquisition was provided by AU.

Corresponding author

Correspondence to Tatyana Molodtsova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4312 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molodtsova, T., Ulyankina, A., Gorshenkov, M. et al. High-throughput electrochemical strategy for synthesis of iron-based nanostructures for electrocatalytic water splitting. J Mater Sci 59, 1265–1279 (2024). https://doi.org/10.1007/s10853-023-09290-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09290-w

Navigation