Skip to main content
Log in

Investigations on the dielectric properties of solution-casted B4C and PbO dispersed epoxy composites

  • Conference Proceeding
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

The present work deals with the development of solution-casted epoxy composites reinforced with B4C and PbO particles with an aim to examine its applicability to dielectric applications. The samples with different weight percentages of PbO were prepared as a hybridization with 20% B4C particles and are subjected to dielectric studies. The important properties such as dielectric constant, dielectric loss factor and AC conductivity of the samples as a function of different frequencies and temperatures were studied and reported in this article. The studies were conducted at five different frequencies ranging from 100 Hz to 1 MHz at different temperature range of 40ͦ C to 150ͦ C. The results showcased the enhancement of the properties upon the increase in addition of the PbO filler from 10wt.% to 40wt.%. The dielectric constant and the dielectric loss factor of the sample with 40 wt % of PbO were found to be 1.78 and 1.3 respectively at 100 Hz and the AC conductivity of the sample with 40wt % of PbO was found to be 998 × 10− 8 mho/m at 1 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Singh, V., Kulkarni, A.-R., Rama Mohan, T.-R.: Dielectric properties of aluminum-epoxy composites. J. Appl. Polym. Sci. (2003). https://doi.org/10.1002/app.13085

    Article  Google Scholar 

  2. Elimat, Z.-M., Zihlif, A.-M., Ragosta, G.: Study of Ac electrical properties of aluminium– epoxy composites. J. Phys. D Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/16/165408

    Article  Google Scholar 

  3. Li, L., Morris, J.E.: An introduction of electrically conductive adhesives. Int. J. Microelectron. Packaging. 1, 6–31 (1998)

    Google Scholar 

  4. Zhang, R.: Novel conductive adhesives for electronic packaging applications: A way towards economical, highly conductive, low temperature and flexible interconnects. Georgia Institute of Technology. (2011)

  5. Aradhana, R., Mohanty, S., Nayak, S.K.: A review on epoxy-based electrically conductive adhesives. Int. J. Adhes. Adhes. (2020). https://doi.org/10.1016/j.ijadhadh.2020.102596

    Article  Google Scholar 

  6. Wang, Z., Zhou, W., Sui, X., Dong, L., Cai, H., Zuo, J.: Dielectric studies of Al nanoparticle reinforced epoxy resin composites. Polym. Compos. (2016). https://doi.org/10.1002/pc.24012

    Article  Google Scholar 

  7. Zhang, L.-B., Wang, J.-Q., Wang, H.-G., Xu, Y., Wang, Z.-F., Li, Z.-P., Mi, Y.-J., Yang, S.-R.: Preparation mechanical and thermal properties of functionalized grapheme /polyimide nano-composites. Compos. Appl. Sci. Manuf. (2012). https://doi.org/10.1016/j.compositesa.2012.03.026

    Article  Google Scholar 

  8. Shang, J., Zhang, Y., Yu, L., Luan, X.-L., Shen, B., Zhang, Z.-L.: Fabrication and enhanced dielectric properties of graphene-polyvinylidene fluoride functional hybrid films with a polyaniline interlayer. J. Mater. Chem. A. (2013). https://doi.org/10.1039/C2TA00602B

    Article  Google Scholar 

  9. Xie, P., Li, Y., Qiu, J.: Preparation and dielectric behaviour of polyvinylidene fluoride composite filled with modified graphite nano-platelet. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40229

    Article  Google Scholar 

  10. Xu, S.: Electrically conductive adhesives. Literature review. pp. 8–45. (2002)

  11. Zhang, L., Shan, X., Wu, P., Song, J., Cheng, Z.Y.: Microstructure and dielectric properties of CCTO-P(VDF-TrFE) nanocomposites. Ferroelectrics. 405(1), 92–97 (2010)

    Article  ADS  Google Scholar 

  12. Chen, M., McCauley, J.W., Hemker, K.J.: Shock-induced localized amorphization in boron carbide. Science. (2003). https://doi.org/10.1126/science.1080819

    Article  Google Scholar 

  13. Vignesh, S., Winowlin Jappes, J.T., Nagaveena, S., Sankaranarayanan, K., Krishna Sharma, R., Brintha, N.C.: A study on mechanical and dielectric properties of B4C and Al dispersed single-layered epoxy-based polymer composites fabricated through molding and curing route. Mater. Phys. Mech. 48(3), 328–341 (2022)

    Google Scholar 

  14. Vignesh, S., Winowlin Jappes, J.T., Nagaveena, S., Krishna Sharma, R., Khan, M.A., More, C.V., Rajini, N., Varol, T.: Development of lightweight polymer laminates for radiation shielding and electronics applications. International Journal of Polymer Science (2022). (2022)

  15. Domnich, V., Reynaud, S., Haber, R.A., Chhowall, M.: Boron carbide: Structure, properties, and stability under stress. J. Am. Ceramic Soc. (2011). https://doi.org/10.1111/j.1551-2916.2011.04865.x

    Article  Google Scholar 

  16. Leo, S., Tallon, C., Franks, G.V.: Near-net-shaping methods for ceramic elements of (body) armor systems. J. Am. Ceramic Soc. (2014). https://doi.org/10.1111/jace.13192

    Article  Google Scholar 

  17. Vignesh, S., Winowlin Jappes, J.T., Nagaveena, S., Sharma, K., Khan, A.: Boron carbide dispersed epoxy compos. Gamma Radiation Shielding Appl. Vacuum. 205, 111474 (2022)

    Google Scholar 

  18. Vignesh, S., Winowlin Jappes, J.T., Nagaveena, S., Krishna Sharma, R., Khan, M.A., Chaitali, V. More: Preparation of novel in-situ layered B4C and PbO reinforced solution casted layered polymer composites (SCLPC) for augmenting the gamma irradiation shielding capability. Vacuum. 207, 111583 (2023)

    Article  ADS  Google Scholar 

  19. Vignesh, S., Jappes, J.T., Adam, K.M., and Temal Varol: Mechanical loadingtribological studies on boron carbide (B 4 C)lead (Pb) particles dispersed epoxy-based multilayered composites. Advances in Materials ScienceEngineering 2022. (2022)

  20. Ortiz, A.L., Candelario, V.M., Borrero-López, O., Guiberteau, F.: Sliding-wear resistance of pure near fully-dense B4C under lubrication with water, diesel fuel, and paraffin oil. J. Eur. Ceram. Soc. (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.040

    Article  Google Scholar 

  21. Moshtaghioun, B.M., Gómez-García, D., Domínguez-Rodríguez, A., Todd, R.I.: Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics. J. Eur. Ceram. Soc. (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.01.017

    Article  Google Scholar 

  22. Lawn, B.R.: Fracture of Brittle solids - second Edition. Cambridge University Press, UK (1993)

    Book  Google Scholar 

  23. Samanta, B., Kumar, P., Nanda, D., Sahu, R.: Dielectric properties of Epoxy-Al composites for embedded capacitor applications. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102384

    Article  Google Scholar 

  24. Kiani, M.A., Ahmadi, S.J., Outokesh, M., Adeli, R., Mohammadi, A.: Preparation and characteristics of Epoxy/Clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application. Radiat. Phys. Chem., https://doi.org/10.1016/j.radphyschem.2017.07.013

  25. Asuka Suzuki, Y., Arai, N., Takata, M., Kobashi: Structural design and bonding strength evaluation of Al/epoxy resin joint via interpenetrating phase layer. J. Mater. Process. Tech. (2018). https://doi.org/10.1016/j.jmatprotec.2018.06.010

    Article  Google Scholar 

  26. Abenojar, J., Martínez, M.A., Velasco, F., Pascual-Sánchez, V., Martín-Martínez, J.M.: Effect of Boron Carbide Filler on the Curing and Mechanical properties of an Epoxy Resin. J. Adhes. (2009). https://doi.org/10.1080/00218460902881782

    Article  Google Scholar 

  27. Nagaveena, S., Mahadevan, C.K.: Preparation by a facile method and characterization of amorphous and crystalline nickel sulfide nanophases. J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2013.08.031

    Article  Google Scholar 

  28. Hougham, G., Tesoro, G., Shaw, J.: Synthesis and properties of highly fluorinated polyimides. Macromolecules. (1994). https://doi.org/10.1021/ma00091a028

    Article  Google Scholar 

  29. Chang, H.C., Lin, H.T., Lin, C.H.: Benzoxazine-based phosphinated bisphenols and their application in preparing flame-retardant, low dielectric cyanate ester thermosets. Polym. Chem. (2012). https://doi.org/10.1039/C2PY00528J

    Article  Google Scholar 

  30. Tareev, B.: Physics of Dielectric Materials. Mir, Moscow (1975)

    Google Scholar 

  31. Kor, T., Choudhary, R.N., Sharma, S., Singh, K.S.: Indian J. Phys. 73A(4), 453 (1999)

    Google Scholar 

  32. Wang, B., Liu, L., Huang, L., Chi, L., Liang, G., Yuan, L., Gu, A.: Fabrication and origin of high-k carbon nanotube/epoxy composites with low dielectric loss through layer-by-layer casting technique. Carbon. (2015). https://doi.org/10.1016/j.carbon.2014.12.062

    Article  Google Scholar 

  33. Jiao, Y., Yuan, L., Liang, G., Gu, A.: Dispersing carbon nanotubes in the unfavorable phase of an immiscible reverse-phase blend with Haake instrument to fabricate high- k nanocomposites with extremely low dielectric loss and percolation threshold. Chem. Eng. J. (2016). https://doi.org/10.1016/j.cej.2015.10.049

    Article  Google Scholar 

  34. Hummel, R.E.: Electronic properties of materials (2nd edition). New York: Springer; (1993)

  35. Musameh, S.M., Zihlif, A., Ragosta, G.: Some electrical properties of aluminum–epoxy composite. Mater. Sci. Engineering: B. (1991). https://doi.org/10.1016/0921-5107(91)90091-9

    Article  Google Scholar 

  36. Lopez, J.-O., Aguilar, R.-G.: Dielectric permittivity and AC conductivity in polycrystalline and amorphous C60. Rev. Mex. Fis. 49(6), 529–536 (2003)

    Google Scholar 

  37. Shekharam, T., Rao, V.-L., Yellaiah, G., Kumar, T.-M., Nagabhushanam, M.: AC conductivity,dielectric and impedance studies of Cd0.8-xPbxZn0.2S mixed semiconductor compounds. J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.08.116

    Article  Google Scholar 

  38. Yang, L., Li, X., Allahyarov, E., Taylor, P.L., Zhang, Q., Zhu, L.: Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer. 54, 1709–1728 (2013)

  39. Bonardd, S., Moreno-Serna, V., Kortaberria, G., Díaz Díaz, D., Leiva, A., Saldías, C.: Dipolar glass polymers containing polarizable groups as dielectric materials for energy storage applications. Minireview Polym. 11(2), 317 (2019). https://doi.org/10.3390/polym11020317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.V- Wrote the manuscript. J.T.W- Supervisor and Evaluated the script. S.N.- Dielectric Testing. R.K.S- Dielectric Testing. G.E- SEM & Prepared Figures. M.A.K- Dielectric Testing and All authors reviewed the manuscript.

Corresponding author

Correspondence to J. T. Winowlin Jappes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, S., Jappes, J.T.W., Nagaveena, S. et al. Investigations on the dielectric properties of solution-casted B4C and PbO dispersed epoxy composites. Interactions 245, 262 (2024). https://doi.org/10.1007/s10751-024-02112-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-02112-8

Keywords

Navigation