Skip to main content
Log in

Performance investigation on photovoltaic thermal collector by using zinc oxide nanofluids

  • Conference Proceeding
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

The efficiency of solar power generation has been severely hampered by the rising temperatures of these cells. In an effort to lessen this difficulty, an outdoor experimental inquiry carried out in Chennai is presented in this research report. To lower PV temperatures, coolants such as water and water-based nanofluids, specifically zinc oxide nanofluids, were used. The results showed that the PVT collector’s thermal and electrical efficiency had been greatly increased by the introduction of nanofluids. At 1.0 LPM, the PVT collector had a maximum electrical efficiency of 17.48% and a maximum thermal efficiency of 49.87%. The nanofluid-cooled PVT collector performed better than freestanding PV modules and water-cooled PVT systems, according to the comparison study. The research also identified difficulties with nanofluid cooling, such as decreased effectiveness during times of maximum solar radiation. All things considered, this study offers insightful information on how to use nanofluids to optimize PVT collector performance, providing ways to improve the efficiency of solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Mehrali, M., Latibari, S.T., Rosen, M.A., Akhiani, A.R., Naghavi, M.S., Sadeghinezhad, E., Metselaar, H.S.C., Nejad, M.M., Mehrali, M.: From rice husk to high-performance shape stabilised phase change materials for thermal energy storage. RSC Adv. 6(51), 45595–45604 (2016)

    Article  ADS  Google Scholar 

  2. Arulprakasajothi, M., Poyyamozhi, N., Chandrakumar, P., Dilip Raja, N., D, Y.: Experimental investigation of salinity gradient solar pond with nano-based phase change materials. Energy Sour. Part a Recover. Utilization Environ. Eff. 45(2), 5465–5480 (2023). https://doi.org/10.1080/15567036.2023.2207508

    Article  Google Scholar 

  3. Muthu, G., Thulasi, S., Dhinakaran, V., Mothilal, T.: Performance of solar parabolic dish thermoelectric generator with PCM. Mater. Today: Proc. 37, 929–933 (2021). https://doi.org/10.1016/j.matpr.2020.06.123

    Article  Google Scholar 

  4. Bahaidarah, H.M., Baloch, A.A., Gandhidasan, P.: Uniform cooling of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 57, 1520–1544 (2016)

    Article  Google Scholar 

  5. JafarKutbudeen, S., Arulprakasajothi, M., N., B., &, Elangovan, K.: Effect of conical strip inserts in a parabolic trough solar collector under turbulent flow. Energy Sour. Part a Recover. Utilization Environ. Eff. 44(1), 2556–2568 (2019). https://doi.org/10.1080/15567036.2019.1650850

    Article  Google Scholar 

  6. Arulprakasajothi, M., Dilip Raja, N., N., B., &, Elangovan, K.: Experimental study on Al2O3 /H2O nanofluid with conical sectional insert in concentric tube heat exchanger. Energy Sour. Part a Recover. Utilization Environ. Eff. 44(1), 2402–2414 (2019). https://doi.org/10.1080/15567036.2019.1649753

    Article  Google Scholar 

  7. JaferKutbudeen, S., Logesh, K., Mahalingam, A., Vinothkanna, I., Effects: 1–12. (2021). https://doi.org/10.1080/15567036.2021.1872745

  8. Balaji, V., Arulprakasajothi, M., Logesh, K., Tharunpillai, B.: Assessment of heat transfer behavior of water based alumina nanofluid. Mater. Today: Proc. 5(9), 20641–20646 (2018). https://doi.org/10.1016/j.matpr.2018.06.446

    Article  Google Scholar 

  9. Hasanuzzaman, M., Malek, A.B.M.A., Islam, M.M., Pandey, A.K., Rahim, N.A.: Global Advancement of Cooling Technologies for PV Systems: A Review, vol. 137, pp. 25–45. Solar Energy (2016)

  10. Chol, S., Estman, J.: Enhancing thermal conductivity of fluids with nanoparticles, ASME-Public46.

  11. Arulprakasajothi, M., Elangovan, K., Chandrasekhar, U., Suresh, S.: Performance study of conical strip inserts in tube heat exchanger using water based titanium oxide nanofluid. Therm. Sci. 22(1 Part B), 477–485 (2018). https://doi.org/10.2298/tsci151024250aations-Fed

  12. Arulprakasajothi, M., Elangovan, K., Chandrasekhar, U., Suresh, S.: Experimental studies of water-based titanium oxide nanofluid in a circular pipe under transition flow with conical strip inserts. Heat. Transf. Res. 49(5), 439–456 (2018). https://doi.org/10.1615/heattransres.2018015783

  13. Arulprakasajothi, M., Elangovan, K., Reddy, H.C., K., Suresh, S.: Experimental investigation on heat transfer effect of conical strip inserts in a circular tube under laminar flow. Front. Energy. 10(2), 136–142 (2015). https://doi.org/10.1007/s11708-015-0389-z

    Article  Google Scholar 

  14. Arulprakasajothi, M., Elangovan, K., Reddy, K.H., Suresh, S.: Heat Transfer Study of Water-based Nanofluids Containing Titanium Oxide Nanoparticles. Materials Today: Proceedings, 2(4–5), 3648–3655. (2015). https://doi.org/10.1016/j.matpr.2015.07.123

  15. Xinyu, W., Huiying, W., Ping, C.: Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels. J. Micromech Microeng. 19, 105020 (2009)

    Article  Google Scholar 

  16. Passandideh-Fard, S.M.: Heris.S.Z. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy. 66, 264–272 (2014)

    Article  Google Scholar 

  17. Ghadiri, M., Sardarabadi, M., Pasandideh-fard, M., Moghadam, A.J.: Experimental investigation of a PVT system performance using nanoferrofluids. Energy Convers. Manage. 103, 468–476 (2015)

    Article  ADS  Google Scholar 

  18. Sardarabadi, M., Passandideh-Fard, M.: Experimental and numerical study of metaloxides/ water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol Energy Mater. Sol Cells. 157, 533–542 (2016)

    Article  Google Scholar 

  19. Al-Shamani, A.N., Sopian, K., Mat, S., Hasan, H.A., Abed, A.M., Ruslan, M.H.: Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers. Manage. 124, 528–542 (2016)

    Article  ADS  Google Scholar 

  20. Soltani, S., Kasaeian, Alibakhsh, Sarrafha, Hamid, Wen, Dongsheng: An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol Energy. 155, 1033–1043 (2017)

    Article  ADS  Google Scholar 

  21. Al-Waeli, A.H.A., Chaichan, M.T., Kazem, Hussein, A., Sopian, K.: Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers. Manage. 148(15), 963–973 (2017)

    Article  ADS  Google Scholar 

  22. Al-Waeli, A.H.A., Sopian, K., Chaichan, M.T., et al.: An experimental investigation of SiCnanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Convers. Manage. 142, 547–558 (2017)

    Article  ADS  Google Scholar 

  23. Sardarabadi, M., Zeinali, P.-F.M.H.S.: Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy. 66(1), 264–272 (2014)

    Article  Google Scholar 

  24. Al-Waeli, A.H., Sopian, K., Chaichan, M.T., Kazem, H.A., Ibrahim, A., Mat, S., Ruslan, M.H.: Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energy. Conv. Manag. 151, 693–708 (2017)

    Article  ADS  Google Scholar 

  25. Svarovskaya, N.V., Olga, V., Bakina., A., Pervikov, V., Rubtsov, K.V., Marat, L.: Electrical explosion of wires for Manufacturing Bimetallic Antibacterial Ti–Ag and Fe–Ag nanoparticles. Russ. Phys. J. 62(9), 1580–1586 (2020). https://doi.org/10.1007/S11182-020-01879-X

    Article  Google Scholar 

  26. Shajahan, M.I., Stephen, C., Michael, J.J., Arulprakasajothi, M., Rathnakumar, P., M, P.: Heat transfer investigations of in-line conical strip inserts using MWCNT/water nanofluid under laminar flow condition. Int. J. Therm. Sci. 183, 107844 (2023). https://doi.org/10.1016/j.ijthermalsci.2022.107844

    Article  Google Scholar 

  27. Rupesh, P.L., Arulprakasajothi, M.: Thermal history analysis on a hot surface using temperature indicating paints. Int. J. Ambient Energy. 43(1), 2392–2396 (2020). https://doi.org/10.1080/01430750.2020.1737838

    Article  Google Scholar 

  28. Attar, A., Arulprakasajothi, M., Vasulkar, D., Gorde, N., Kharat, S., Kulkarni, S.: Investigation of impact of the magnetic field through Halbach array on hydrocarbon fuel. Int. J. Ambient Energy. 43(1), 2124–2129 (2020). https://doi.org/10.1080/01430750.2020.1727951

    Article  Google Scholar 

  29. Rupesh, P.L., Arulprakasajothi, M., Raja, K.: Isotherm recognition on a V-notch specimen by color identification method. Int. J. Inform. Technol. 14(3), 1455–1465 (2021). https://doi.org/10.1007/s41870-021-00652-8

    Article  Google Scholar 

  30. Srinivasan, K.V., Manimaran, A., Arulprakasajothi, M., Pokale, R.D., Arolkar, V.A.: Theoretical analysis on pressure drop across porous cryocooler regenerator in evaluating the optimum regenerator porosity. Energy Sour. Part a Recover. Utilization Environ. Eff. 44(1), 2045–2060 (2019). https://doi.org/10.1080/15567036.2019.1649321

    Article  Google Scholar 

  31. Arulprakasajothi, M., Rupesh, P.L., Rana, H.K., Elangovan, K.: Colour changing material for the estimation of flue gas radiation on the miniature gas turbine surface. Proc. Institution Mech. Eng. Part. L: J. Materials: Des. Appl. 236(2), 374–388 (2021). https://doi.org/10.1177/14644207211045520

    Article  Google Scholar 

  32. Jadhav, S.M., Mahalingam, A., Ugle, V.V., Kamaraj, L.: Increasing the waste heat absorption performance in the refrigeration system using electromagnetic effect. Int. J. Simul. Multi. Design Optim. 13, 20 (2022). https://doi.org/10.1051/smdo/2022010

    Article  Google Scholar 

  33. VinothKanna, I., Arulprakasajothi, M., Eliyas, S.: A detailed study of IC engines and a novel discussion with comprehensive view of alternative fuels used in petrol and diesel engines. Int. J. Ambient Energy. 42(15), 1794–1802 (2019). https://doi.org/10.1080/01430750.2019.1614994

    Article  Google Scholar 

  34. Gangadhara Rao, B., Elangovan, K., Chandra Reddy, K.H., Arulprakasajothi, M.: THERMAL ELECTRIC ANALYSIS OF 3-D SANDWICH COMPACT BUSBAR WITH CLASS-B AND CLASS-F INSULATION. Front. Heat. Mass. Transf. 16 (2021). https://doi.org/10.5098/hmt.16.15

  35. Beemkumar, N., Yuvarajan, D., Arulprakasajothi, M., Elangovan, K., Arunkumar, T.: Control of room temperature fluctuations in the building by incorporating PCM in the roof. J. Therm. Anal. Calorim. 143(4), 3039–3046 (2020). https://doi.org/10.1007/s10973-019-09226-0

    Article  Google Scholar 

  36. Evgeny, M.H.Y., Ahmad, S., Ghasem, F., Kamaruzzaman, D., Perk, S., Lin, C.: Thermal performance of Nanofluid Flow Inside evacuated Tube Solar Collector. Int. J. Heat Technol. 39(4), 1262–1270 (2021). https://doi.org/10.18280/IJHT.390424

    Article  Google Scholar 

  37. Arash, K., Meysam, K., Seyed, Reza, M., Tao, M.: Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material. Appl. Energy. 295, 116859 (2021). https://doi.org/10.1016/J.APENERGY.2021.116859

    Article  Google Scholar 

  38. Fazlay, R., Likhan, D., Khairul, H., Navid, A., Rahman, S., Rahman, S., Tauhidur: Rahman. State-of-the-art review on water-based nanofluids for low temperature solar thermal collector application. Solar Energy Materials and Solar Cells, 230:111220-. (2021). https://doi.org/10.1016/J.SOLMAT.2021.111220

  39. Saleh., A.H., Adnan, M., Hussein., Suad, Hassan, D.: Efficiency enhancement of solar cell collector using Fe3O4 / water nanofluid. 1105(1):012059-. (2021). https://doi.org/10.1088/1757-899X/1105/1/012059

  40. Hasan, S., Mahmoud, M., Mashkour, A., Jaafer, L., Ahmad, H., Sabry, H.: Enhancement of energy transfer efficiency for photovoltaic (PV) systems by cooling the panel surfaces. Eastern-European J. Enterp. Technol. 4, 83–89 (2021). https://doi.org/10.15587/1729-4061.2021.238700

    Article  Google Scholar 

  41. Kandeal., A.W., Almoataz, M., Algazzar., M.R., Elkadeem, A., Kumar, T., Gamal, B., Abdelaziz., Emad, M.S., El-Said, A., Mimi, E., Meng, A., Reham, K., Hossam, El-Din, F., Swellam, W., Sharshir: Nano-enhanced cooling techniques for photovoltaic panels: A systematic review and prospect recommendations. Sol. Energy. 227, 259–272 (2021). https://doi.org/10.1016/J.SOLENER.2021.09.013

    Article  ADS  Google Scholar 

  42. Someshwar, S., Bhakre., Pravin, D., Sawarkar., Vilas, R., Kalamkar: Performance evaluation of PV panel surfaces exposed to hydraulic cooling– a review. Sol. Energy. 224, 1193–1209 (2021). https://doi.org/10.1016/J.SOLENER.2021.06.083

    Article  ADS  Google Scholar 

  43. Mehmet, A., Artur, Y.: Cebula. Review of research in photovoltaic panels cooling for domestic and industrial applications. 323:00001-. (2021). https://doi.org/10.1051/E3SCONF/202132300001

  44. Hernandez-Perez, J.G., Ali, J.G., Manuel, C., Luis, B., Flota-Bañuelos, D., Patiño-Lopez: A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation. Renew. Energy. 147, 1209–1220 (2020). https://doi.org/10.1016/J.RENENE.2019.09.088

    Article  Google Scholar 

  45. Diyang, C., Shunlin, L., Dongdong, W., Zheng, L.: A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables. Earth Syst. Sci. Data. 13(11), 5087–5114 (2021). https://doi.org/10.5194/ESSD-13-5087-2021

    Article  Google Scholar 

  46. Jun, S., Seong, H., Dae, J., Sang, Phil, Y., Seong, Su, L.: Long-term experiments of Cooling/Cleaning on Surface of 200-kW PV power array. Trans. Korean Soc. Mech. Eng. B. 37(11), 971–975 (2013). https://doi.org/10.3795/KSME-B.2013.37.11.971

    Article  Google Scholar 

  47. Balakrishnan, R., Govindaraj, K., Mahalingam, A., Devarajan, Y.: Analysis of the thermal management of electronic equipment by employing silicon carbide nano-pcm-based heat sink. Environ. Sci. Pollut. Res. (2023). https://doi.org/10.1007/s11356-023-27468-2

    Article  Google Scholar 

  48. Thanigaitambi, R., Ramesh, S., Arulprakasajothi, M., Devarajan, Y., Sundaram, M., Subbaiyan, N.: Thermal management using nano coated heat sink for electric vehicle battery cooling. Environ. Qual. Manage. Portico. (2023). https://doi.org/10.1002/tqem.21996

    Article  Google Scholar 

  49. Ugle, V.V., Arulprakasajothi, M., Padmanabhan, S., Devarajan, Y., Lakshmaiya, N., Subbaiyan, N.: Investigation of heat transport characteristics of titanium dioxide nanofluids with corrugated tube. Environ. Qual. Manage. Portico. (2023). https://doi.org/10.1002/tqem.21999

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. Chandrakumar has contributed Literature survey of the paper.K.Elangovan has contributed Introduction, Specifics of the Experiment.B Srimanickam has contributed rest of the work as well as overall writing and final stage of the paper.Poyyamozhi N has contributed Results and DiscussionsMuthukannan M has contributed alignment.

Corresponding author

Correspondence to B. Srimanickam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poyyamozhi, N., Muthukannan, M., Chandrakumar, P. et al. Performance investigation on photovoltaic thermal collector by using zinc oxide nanofluids. Interactions 245, 244 (2024). https://doi.org/10.1007/s10751-024-02081-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-02081-y

Keywords

Navigation