Skip to main content
Log in

A comparative review of biodegradable and conventional plastic packaging

  • Research
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

With growing environmental concerns, the shift from conventional to biodegradable plastic packaging has gained significant momentum. This review paper comprehensively explores the environmental impacts, material properties, manufacturing techniques, and applications of both conventional and biodegradable plastic packaging. Highlighting key case studies, it showcases successful implementations of biodegradable packaging and the lessons learned. The paper also delves into future perspectives, discussing technological advancements and policy recommendations to promote the widespread adoption of biodegradable materials. The goal is to provide a balanced view to aid industry stakeholders and policymakers in making informed decisions for sustainable packaging solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Ncube, L.K., Ude, A.U., Ogunmuyiwa, E.N., Zulkifli, R., Beas, I.N.: An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling. 6(1), 12 (Feb. 2021). https://doi.org/10.3390/recycling6010012

  2. Shaikh, S., Yaqoob, M., Aggarwal, P.: An overview of biodegradable packaging in food industry. Curr. Res. Food Sci. 4, 503–520 (2021). https://doi.org/10.1016/j.crfs.2021.07.005

    Article  Google Scholar 

  3. Surendren, A., Mohanty, A.K., Liu, Q., Misra, M.: A review of biodegradable thermoplastic starches, their blends and composites: Recent developments and opportunities for single-use plastic packaging alternatives. Green Chem. 24(22), 8606–8636 (2022). https://doi.org/10.1039/D2GC02169B

    Article  Google Scholar 

  4. Rasal, R.M., Janorkar, A.V., Hirt, D.E.: Poly(lactic acid) modifications, Prog Polym Sci, vol. 35, no. 3, pp. 338–356, Mar. (2010). https://doi.org/10.1016/j.progpolymsci.2009.12.003

  5. Ingrao, C., Gigli, M., Siracusa, V.: An attributional life cycle Assessment application experience to highlight environmental hotspots in the production of foamy polylactic acid trays for fresh-food packaging usage. J. Clean. Prod. 150, 93–103 (May 2017). https://doi.org/10.1016/j.jclepro.2017.03.007

  6. Hamdan, A.M., Sonomoto, Kenji: Production of optically pure lactic acid for bioplastics, Lactic Acid Bacteria and Bifidobacteria: Current Progress in Advanced Research. Caister Academic Press, Portland, USA, (2011)

  7. Lovett, J., de Bie, F.: Sustainable sourcing of feedstocks for bioplastics: Clarifying sustainability aspects around feedstock use for the production of bioplastics. Corbion Group: Amsterdam Neth., (2016)

  8. Spinella, S., et al.: Polylactide/cellulose nanocrystal nanocomposites: Efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polym. (Guildf). 65, 9–17 (May 2015). https://doi.org/10.1016/j.polymer.2015.02.048

  9. De Luca, S., Milanese, D., Gallichi-Nottiani, D., Cavazza, A., Sciancalepore, C.: Poly(lactic acid) and Its Blends for Packaging Application: A Review, Clean Technologies, vol. 5, no. 4, pp. 1304–1343, Nov. (2023). https://doi.org/10.3390/cleantechnol5040066

  10. Dufresne, A.: Cellulose nanomaterial reinforced polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 29, 1–8 (May 2017). https://doi.org/10.1016/j.cocis.2017.01.004

  11. Candido, R.G., Godoy, G.G., Gonçalves, A.R.: Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydr. Polym. 167, 280–289 (Jul. 2017). https://doi.org/10.1016/j.carbpol.2017.03.057

  12. Moubarik, A., Grimi, N., Boussetta, N.: Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene, Compos B Eng, vol. 52, pp. 233–238, Sep. (2013). https://doi.org/10.1016/j.compositesb.2013.04.040

  13. Wong Sak Hoi, L., Martincigh, B.S.: Sugar cane plant fibres: Separation and characterisation. Ind. Crops Prod. 47, 1–12 (May 2013). https://doi.org/10.1016/j.indcrop.2013.02.017

  14. de Oliveira, F.B., Bras, J., Pimenta, M.T.B., da Curvelo, A.A., Belgacem, M.N.: Production of cellulose nanocrystals from sugarcane bagasse fibers and pith, Ind Crops Prod, vol. 93, pp. 48–57, Dec. (2016). https://doi.org/10.1016/j.indcrop.2016.04.064

  15. Leão, R.M., Miléo, P.C., Maia, J.M.L.L., Luz, S.M.: Environmental and technical feasibility of cellulose nanocrystal manufacturing from sugarcane bagasse, Carbohydr Polym, vol. 175, pp. 518–529, Nov. (2017). https://doi.org/10.1016/j.carbpol.2017.07.087

  16. Feng, Y.-H., et al.: Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse. Ind. Crops Prod. 111, 285–291 (Jan. 2018). https://doi.org/10.1016/j.indcrop.2017.10.041

  17. Ferrer, A., Pal, L., Hubbe, M.: Nanocellulose in packaging: Advances in barrier layer technologies. Ind. Crops Prod. 95, 574–582 (Jan. 2017). https://doi.org/10.1016/j.indcrop.2016.11.012

  18. Azeredo, H.M.C., Rosa, M.F., Mattoso, L.H.C.: Nanocellulose in bio-based food packaging applications. Ind. Crops Prod. 97, 664–671 (Mar. 2017). https://doi.org/10.1016/j.indcrop.2016.03.013

  19. García, A., Gandini, A., Labidi, J., Belgacem, N., Bras, J.: Industrial and crop wastes: A new source for nanocellulose biorefinery. Ind. Crops Prod. 93, 26–38 (Dec. 2016). https://doi.org/10.1016/j.indcrop.2016.06.004

  20. Gan, I., Chow, W.S.: Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review. Food Packag Shelf Life. 17, 150–161 (Sep. 2018). https://doi.org/10.1016/j.fpsl.2018.06.012

  21. Thambiraj, S., Ravi Shankaran, D.: Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl. Surf. Sci. 412, 405–416 (Aug. 2017). https://doi.org/10.1016/j.apsusc.2017.03.272

  22. El-Samahy, M.A., Mohamed, S.A.A., Abdel Rehim, M.H., Mohram, M.E.: Synthesis of hybrid paper sheets with enhanced air barrier and antimicrobial properties for food packaging, Carbohydr Polym, vol. 168, pp. 212–219, Jul. (2017). https://doi.org/10.1016/j.carbpol.2017.03.041

  23. Achaby, M.E., et al.: Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int. J. Biol. Macromol. 96, 340–352 (Mar. 2017). https://doi.org/10.1016/j.ijbiomac.2016.12.040

  24. Miri, N.E., et al.: Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohydr. Polym. 137, 239–248 (Feb. 2016). https://doi.org/10.1016/j.carbpol.2015.10.072

  25. Salehudin, M.H., Salleh, E., Mamat, S.N.H., Muhamad, I.I.: Starch based active packaging Film Reinforced with empty fruit bunch (EFB) cellulose nanofiber. Procedia Chem. 9, 23–33 (2014). https://doi.org/10.1016/j.proche.2014.05.004

    Article  Google Scholar 

  26. Li, H.-Z., Chen, S.-C., Wang, Y.-Z.: Preparation and characterization of nanocomposites of polyvinyl alcohol/cellulose nanowhiskers/chitosan. Compos. Sci. Technol. 115, 60–65 (Aug. 2015). https://doi.org/10.1016/j.compscitech.2015.05.004

  27. Lu, H., Gui, Y., Zheng, L., Liu, X.: Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res. Int. 50(1), 121–128 (Jan. 2013). https://doi.org/10.1016/j.foodres.2012.10.013

  28. Ma, X., Cheng, Y., Qin, X., Guo, T., Deng, J., Liu, X.: Hydrophilic modification of cellulose nanocrystals improves the physicochemical properties of cassava starch-based nanocomposite films, LWT, vol. 86, pp. 318–326, Dec. (2017). https://doi.org/10.1016/j.lwt.2017.08.012

  29. Sung, S.H., Chang, Y., Han, J.: Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr. Polym. 169, 495–503 (Aug. 2017). https://doi.org/10.1016/j.carbpol.2017.04.037

  30. Achaby, M.E., Kassab, Z., Aboulkas, A., Gaillard, C., Barakat, A.: Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int. J. Biol. Macromol. 106, 681–691 (Jan. 2018). https://doi.org/10.1016/j.ijbiomac.2017.08.067

  31. Singh, S., Gaikwad, K.K., Lee, Y.S.: Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract. Int. J. Biol. Macromol. 107, 1879–1887 (Feb. 2018). https://doi.org/10.1016/j.ijbiomac.2017.10.057

  32. El-Wakil, N.A., Hassan, E.A., Abou-Zeid, R.E., Dufresne, A.: Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging, Carbohydr Polym, vol. 124, pp. 337–346, Jun. (2015). https://doi.org/10.1016/j.carbpol.2015.01.076

  33. Zhang, H., Jung, J., Zhao, Y.: Preparation and characterization of cellulose nanocrystals films incorporated with essential oil loaded β-chitosan beads. Food Hydrocoll. 69, 164–172 (Aug. 2017). https://doi.org/10.1016/j.foodhyd.2017.01.029

  34. Oun, A.A., Rhim, J.-W.: Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydr. Polym. 150, 187–200 (Oct. 2016). https://doi.org/10.1016/j.carbpol.2016.05.020

  35. Pereira, P.H.F., et al.: Wheat straw hemicelluloses added with cellulose nanocrystals and citric acid. Effect on film physical properties. Carbohydr. Polym. 164, 317–324 (May 2017). https://doi.org/10.1016/j.carbpol.2017.02.019

  36. Faradilla, R.H.F., et al.: Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. Carbohydr. Polym. 174, 1156–1163 (Oct. 2017). https://doi.org/10.1016/j.carbpol.2017.07.025

  37. de Oliveira, J.P., et al.: Apr., Cellulose fibers extracted from rice and oat husks and their application in hydrogel, Food Chem, vol. 221, pp. 153–160, (2017). https://doi.org/10.1016/j.foodchem.2016.10.048

  38. Fortunati, E., Puglia, D., Luzi, F., Santulli, C., Kenny, J.M., Torre, L.: Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I, Carbohydr Polym, vol. 97, no. 2, pp. 825–836, Sep. (2013). https://doi.org/10.1016/j.carbpol.2013.03.075

  39. Fortunati, E., et al.: Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur. Polym. J. 56, 77–91 (Jul. 2014). https://doi.org/10.1016/j.eurpolymj.2014.03.030

  40. Mujtaba, M., Salaberria, A.M., Andres, M.A., Kaya, M., Gunyakti, A., Labidi, J.: Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films, Int J Biol Macromol, vol. 104, pp. 944–952, Nov. (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.127

  41. Reddy, J.P., Rhim, J.-W.: Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr. Polym. 110, 480–488 (Sep. 2014). https://doi.org/10.1016/j.carbpol.2014.04.056

  42. Wang, L.-F., Shankar, S., Rhim, J.-W.: Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocoll. 63, 201–208 (Feb. 2017). https://doi.org/10.1016/j.foodhyd.2016.08.041

  43. Luzi, F., Fortunati, E., Giovanale, G., Mazzaglia, A., Torre, L., Balestra, G.M.: Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications, Int J Biol Macromol, vol. 104, pp. 43–55, Nov. (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.176

  44. Johar, N., Ahmad, I., Dufresne, A.: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 37(1), 93–99 (May 2012). https://doi.org/10.1016/j.indcrop.2011.12.016

  45. Fortunati, E., et al.: Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Ind. Crops Prod. 92, 201–217 (Dec. 2016). https://doi.org/10.1016/j.indcrop.2016.07.047

  46. Qazanfarzadeh, Z., Kadivar, M.: Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. Int. J. Biol. Macromol. 91, 1134–1140 (Oct. 2016). https://doi.org/10.1016/j.ijbiomac.2016.06.077

  47. Slavutsky, A.M., Bertuzzi, M.A.: Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr. Polym. 110, 53–61 (Sep. 2014). https://doi.org/10.1016/j.carbpol.2014.03.049

  48. Echegoyen, Y., Nerín, C.: Nanoparticle release from nano-silver antimicrobial food containers. Food Chem. Toxicol. 62, 16–22 (Dec. 2013). https://doi.org/10.1016/j.fct.2013.08.014

  49. Mandal, A., Chakrabarty, D.: Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J. Ind. Eng. Chem. 20(2), 462–473 (Mar. 2014). https://doi.org/10.1016/j.jiec.2013.05.003

  50. Miri, N.E., et al.: Sep., Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films, Carbohydr Polym, vol. 129, pp. 156–167, (2015). https://doi.org/10.1016/j.carbpol.2015.04.051

  51. Kargarzadeh, H., Johar, N., Ahmad, I.: Starch biocomposite film reinforced by multiscale rice husk fiber. Compos. Sci. Technol. 151, 147–155 (Oct. 2017). https://doi.org/10.1016/j.compscitech.2017.08.018

  52. Nascimento, P., Marim, R., Carvalho, G., Mali, S.: Nanocellulose Produced from Rice hulls and its Effect on the properties of Biodegradable Starch films. Mater. Res. 19(1), 167–174 (Feb. 2016). https://doi.org/10.1590/1980-5373-MR-2015-0423

  53. Silvério, H.A., Flauzino Neto, W.P., Dantas, N.O., Pasquini, D.: Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind. Crops Prod. 44, 427–436 (Jan. 2013). https://doi.org/10.1016/j.indcrop.2012.10.014

  54. Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M., Akhtar, N.: Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromol. 109, 1095–1107 (Apr. 2018). https://doi.org/10.1016/j.ijbiomac.2017.11.097

  55. Ogunsona, E., Ojogbo, E., Mekonnen, T.: Advanced material applications of starch and its derivatives. Eur. Polym. J. 108, 570–581 (Nov. 2018). https://doi.org/10.1016/j.eurpolymj.2018.09.039

  56. Neetoo, H., Ye, M., Chen, H.: Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. Int. J. Food Microbiol. 136(3), 326–331 (Jan. 2010). https://doi.org/10.1016/j.ijfoodmicro.2009.10.003

  57. Lourdin, D., Della Valle, G., Colonna, P.: Influence of amylose content on starch films and foams. Carbohydr. Polym. 27(4), 261–270 (Jan. 1995). https://doi.org/10.1016/0144-8617(95)00071-2

  58. Forssell, P.: Oxygen permeability of amylose and amylopectin films. Carbohydr. Polym. 47(2), 125–129 (Feb. 2002). https://doi.org/10.1016/S0144-8617(01)00175-8

  59. Shi, R., et al.: Jul., Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending, Carbohydr Polym, vol. 69, no. 4, pp. 748–755, (2007). https://doi.org/10.1016/j.carbpol.2007.02.010

  60. Ma, X.F., Yu, J.G., Wan, J.J.: Urea and ethanolamine as a mixed plasticizer for thermoplastic starch. Carbohydr. Polym. 64(2), 267–273 (May 2006). https://doi.org/10.1016/j.carbpol.2005.11.042

  61. Ratto, J.A., Stenhouse, P.J., Auerbach, M., Mitchell, J., Farrell, R.: Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system, Polymer (Guildf), vol. 40, no. 24, pp. 6777–6788, Nov. (1999). https://doi.org/10.1016/S0032-3861(99)00014-2

  62. Shin, B.-Y., Lee, S.-I., Shin, Y.-S., Balakrishnan, S., Narayan, R.: Rheological, mechanical and biodegradation studies on blends of thermoplastic starch and polycaprolactone, Polym Eng Sci, vol. 44, no. 8, pp. 1429–1438, Aug. (2004). https://doi.org/10.1002/pen.20139

  63. Ge, C., Lansing, B., Lewis, C.L.: Thermoplastic starch and poly(vinyl alcohol) blends centered barrier film for food packaging applications. Food Packag Shelf Life. 27, 100610 (Mar. 2021). https://doi.org/10.1016/j.fpsl.2020.100610

  64. Parulekar, Y., Mohanty, A.K.: Extruded Biodegradable Cast Films from Polyhydroxyalkanoate and Thermoplastic Starch Blends: Fabrication and Characterization, Macromol Mater Eng, vol. 292, no. 12, pp. 1218–1228, Dec. (2007). https://doi.org/10.1002/mame.200700125

  65. Sánchez, M.L., Patiño, W., Cárdenas, J.: Physical-mechanical properties of bamboo fibers-reinforced biocomposites: Influence of surface treatment of fibers. J. Building Eng. 28, 101058 (Mar. 2020). https://doi.org/10.1016/j.jobe.2019.101058

  66. Waste management and recovery options for bioplastics: https://www.european-bioplastics.org/bioplastics/waste-management/

  67. Dilkes-Hoffman, L.S., Pratt, S., Lant, P.A., Laycock, B.: The role of Biodegradable Plastic in solving Plastic Solid Waste Accumulation. in In: Plastics to Energy, pp. 469–505. Elsevier (2019). https://doi.org/10.1016/B978-0-12-813140-4.00019-4

  68. Verma, D., Fortunati, E.: Biobased and Biodegradable Plastics. in In: Handbook of Ecomaterials, pp. 2955–2976. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-68255-6_103

    Chapter  Google Scholar 

  69. Janczak, K., Hrynkiewicz, K., Znajewska, Z., Dąbrowska, G.: Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil. Int. Biodeterior. Biodegradation. 130, 65–75 (May 2018). https://doi.org/10.1016/j.ibiod.2018.03.017

  70. Pattanasuttichonlakul, W., Sombatsompop, N., Prapagdee, B.: Accelerating biodegradation of PLA using microbial consortium from dairy wastewater sludge combined with PLA-degrading bacterium. Int. Biodeterior. Biodegradation. 132, 74–83 (Aug. 2018). https://doi.org/10.1016/j.ibiod.2018.05.014

  71. Adler, B.: Plastics and Human Health| Plastics and the Environment Series, Geneva Environment Network

  72. D’Angelo, S., Meccariello, R.: Microplastics: A threat for male fertility. Int. J. Environ. Res. Public. Health. 18(5), 2392 (Mar. 2021). https://doi.org/10.3390/ijerph18052392

  73. Dudkiewicz, A., Dutta, P., Kołożyn-Krajewska, D.: Ethylene oxide in foods: Current approach to the risk assessment and practical considerations based on the European food business operator perspective. Eur. Food Res. Technol. 248(7), 1951–1958 (Jul. 2022). https://doi.org/10.1007/s00217-022-04018-7

  74. Nishad, P.A., Bhaskarapillai, A.: Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies. Chemosphere. 277, 130252 (Aug. 2021). https://doi.org/10.1016/j.chemosphere.2021.130252

  75. Silano, V., et al.: Assessment of the impact of the IARC Monograph 121 on the safety of the substance styrene (FCM 193) for its use in plastic food contact materials. EFSA J. 18(10) (Oct. 2020). https://doi.org/10.2903/j.efsa.2020.6247

  76. Tumu, K., Vorst, K., Curtzwiler, G.: Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols, Compr Rev Food Sci Food Saf, vol. 22, no. 2, pp. 1337–1359, Mar. (2023). https://doi.org/10.1111/1541-4337.13113

  77. Minor, A.-J., Goldhahn, R., Rihko-Struckmann, L., Sundmacher, K.: Chemical Recycling Processes of Nylon 6 to Caprolactam: Review and Techno-Economic Assessment. Chem. Eng. J. 474, 145333 (Oct. 2023). https://doi.org/10.1016/j.cej.2023.145333

  78. Towle, K.M., Benson, S.M., Egnot, N.S., Marsh, G.M.: An Ecological Evaluation of Vinyl Chloride Exposure and Liver Cancer Incidence and Mortality in Texas, J Clin Transl Hepatol, vol. 000, no. 000, pp. 1–7, Mar. (2021). https://doi.org/10.14218/JCTH.2020.00073

  79. Watkins, E., Schweitzer, J.-P., Leinala, E., Börkey, P.: Policy Approaches to Incentivise Sustainable Plastic Design., (2019)

  80. Lastovina, T.A., Budnyk, A.P.: A review of methods for extraction, removal, and stimulated degradation of microplastics. J. Water Process. Eng. 43, 102209 (Oct. 2021). https://doi.org/10.1016/j.jwpe.2021.102209

  81. Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J., Olazar, M.: Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 82, 576–596 (Feb. 2018). https://doi.org/10.1016/j.rser.2017.09.032

  82. Suzuki, G., et al.: Mechanical recycling of plastic waste as a point source of microplastic pollution. Environ. Pollut. 303, 119114 (Jun. 2022). https://doi.org/10.1016/j.envpol.2022.119114

  83. Amobonye, A., Bhagwat, P., Singh, S., Pillai, S.: Plastic biodegradation: Frontline microbes and their enzymes. Sci. Total Environ. 759, 143536 (Mar. 2021). https://doi.org/10.1016/j.scitotenv.2020.143536

  84. Lear, G., et al.: Jan., Plastics and the microbiome: impacts and solutions, Environ Microbiome, vol. 16, no. 1, p. 2, (2021). https://doi.org/10.1186/s40793-020-00371-w

  85. Siddiqui, S.A., Yang, X., Deshmukh, R.K., Gaikwad, K.K., Bahmid, N.A., Castro-Muñoz, R.: Recent advances in reinforced bioplastics for food packaging– A critical review, Int J Biol Macromol, vol. 263, p. 130399, Apr. (2024). https://doi.org/10.1016/j.ijbiomac.2024.130399

  86. idl pack: INFLATABLE AIR PILLOWS, https://idlpack.com/biodegradable-packaging/

  87. Wang, B., et al.: Apr., An overview on plasticized biodegradable corn starch-based films: the physicochemical properties and gelatinization process, Crit Rev Food Sci Nutr, vol. 62, no. 10, pp. 2569–2579, (2022). https://doi.org/10.1080/10408398.2020.1868971

  88. Nurul Fazita, M.R., et al.: Jun., Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review, Materials, vol. 9, no. 6, p. 435, (2016). https://doi.org/10.3390/ma9060435

  89. Reichert, C.L., et al.: Bio-based packaging: Materials, modifications, Industrial Applications and sustainability. Polym. (Basel). 12, 1558 (Jul. 2020). https://doi.org/10.3390/polym12071558

  90. Velásquez, E., Patiño Vidal, C., Rojas, A., Guarda, A., Galotto, M.J., López de Dicastillo, C.: Natural antimicrobials and antioxidants added to polylactic acid packaging films. Part I: Polymer processing techniques, Compr Rev Food Sci Food Saf, vol. 20, no. 4, pp. 3388–3403, Jul. (2021). https://doi.org/10.1111/1541-4337.12777

  91. Yasim-Anuar, T.A.T., et al.: Polyhydroxyalkanoates for packaging application. in In: Bio‐based Packaging, pp. 279–293. Wiley (2021). https://doi.org/10.1002/9781119381228.ch16

  92. Singh, R.V., Sharma, P., Sambyal, K.: Application of Sugarcane Bagasse in Chemicals and Food Packaging Industry: Potential and Challenges, Circular Economy and Sustainability, vol. 2, no. 4, pp. 1479–1500, Dec. (2022). https://doi.org/10.1007/s43615-022-00167-9

  93. Eight advantages and Four disadvantages of the polylactic acid (PLA): Accessed: Nov. 16, 2023. [Online]. Available: https://www.linkedin.com/pulse/eight-advantages-four-disadvantages-polylactic-acid-pla-yewtree-zhang

  94. Moretti, C., et al.: Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET. Resour. Conserv. Recycl. 169, 105508 (Jun. 2021). https://doi.org/10.1016/j.resconrec.2021.105508

  95. Creighton, M.: A Comparison of PLA with Other Commodity Plastics, Aug. Accessed: Nov. 16, 2023. [Online]. Available: (2018). https://www.creativemechanisms.com/blog/a-comparison-of-pla-with-other-commodity-plastics

  96. Biodegradable Packaging Market. Accessed: Nov. 29: [Online]. Available: (2023). https://www.precedenceresearch.com/biodegradable-packaging-market#:~:text=The%20global%20biodegradable%20packaging%20market,time%20frame%202023%20to%202032

  97. How Much Does Biodegradable Packaging Cost: In New Zealand? Accessed: Nov. 29, 2023. [Online]. Available: https://ecomake.co.nz/cup-packaging-biodegradable-cost-price/

  98. Weavabel, The Cost of Sustainable Packaging — is it More Expensive? Accessed:: Nov. 29, 2023. [Online]. Available: https://www.weavabel.com/blog/why-the-cost-of-sustainable-packaging-in-fashion-is-truly-worth-it

  99. Laycock, B.G., Halley, Peter, J.: Starch applications: State of market and new trends. Starch Polym., pp. 381–419, (2014)

  100. Jiang, T., Duan, Q., Zhu, J., Liu, H., Yu, L.: Starch-based biodegradable materials: Challenges and opportunities. Adv. Industrial Eng. Polym. Res. 3(1), 8–18 (Jan. 2020). https://doi.org/10.1016/j.aiepr.2019.11.003

  101. Mello, L.R.P.F., Mali, S.: Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Ind. Crops Prod. 55, 187–193 (Apr. 2014). https://doi.org/10.1016/j.indcrop.2014.02.015

  102. Sanhawong, W., Banhalee, P., Boonsang, S., Kaewpirom, S.: Effect of concentrated natural rubber latex on the properties and degradation behavior of cotton-fiber-reinforced cassava starch biofoam, Ind Crops Prod, vol. 108, pp. 756–766, Dec. (2017). https://doi.org/10.1016/j.indcrop.2017.07.046

  103. Machado, C.M., Benelli, P., Tessaro, I.C.: Sesame cake incorporation on cassava starch foams for packaging use. Ind. Crops Prod. 102, 115–121 (Aug. 2017). https://doi.org/10.1016/j.indcrop.2017.03.007

  104. Chiarathanakrit, C., Riyajan, S.-A., Kaewtatip, K.: Transforming fish scale waste into an efficient filler for starch foam. Carbohydr. Polym. 188, 48–53 (May 2018). https://doi.org/10.1016/j.carbpol.2018.01.101

  105. Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N.: Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Ind. Crops Prod. 37(1), 542–546 (May 2012). https://doi.org/10.1016/j.indcrop.2011.07.034

  106. Engel, J.B., Ambrosi, A., Tessaro, I.C.: Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydr. Polym. 225, 115234 (Dec. 2019). https://doi.org/10.1016/j.carbpol.2019.115234

  107. da do Nascimento, E.M., Carvalho, C.W.P., Takeiti, C.Y., Freitas, D.D.G.C., Ascheri, J.L.R.: Use of sesame oil cake (Sesamum indicum L.) on corn expanded extrudates, Food Research International, vol. 45, no. 1, pp. 434–443, Jan. (2012). https://doi.org/10.1016/j.foodres.2011.11.009

  108. Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N.: Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil, Carbohydr Polym, vol. 110, pp. 70–77, Sep. (2014). https://doi.org/10.1016/j.carbpol.2014.03.067

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.H. and S.M. wrote the main manuscript text. D.R. prepared Figs. 13. Y.A. conducted the literature review and contributed to drawing the Tables 1 and 2. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Nikita P. Chokshi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M.A., Mishra, S., Agrawal, Y. et al. A comparative review of biodegradable and conventional plastic packaging. Interactions 245, 126 (2024). https://doi.org/10.1007/s10751-024-01968-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-01968-0

Keywords

Navigation