Skip to main content
Log in

Effect of deposition temperature on growth of Zinc oxide Nanorods on Zinc oxide thin film for Optoelectronics and Sensing Applications

  • Conference Proceeding
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

In the present research work, Zinc oxide (ZnO) thin film was depos-ited on the Silicondioxide(SiO2)(~ 200 nm)/Silicon substrate by using Radio Frequency (RF) sputtering at 4000C to study the effect of deposition temperature on growth of ZnO Nanorods on ZnO thin films. The thin-film surface morphology was examined using X-ray diffraction and Atomic Force Microscopy. Hydrothermal method was used for the growth of ZnO nanorods on ZnO thin films. The ZnO nanorods’ structural properties were determined using Field Emission Scanning Electron Microscopy and X-ray diffraction.To investigate the effect of temperature variation onZnO Nanorod growth and orientation was studied. The Metal Semiconductor Metal(MSM) based device structure was fabricated by depositing Ti/Au contact using thermal evaporator and shadow mask technique. Further, the electrical characteristics were carried out by using semi-conductor parameter analyzer. Later the device was exposed to UV light of frequency 365 nm and 380 nm to study the photodetection capability.And finally the sensing propertiesof the device was measured by exposing it to ethanol. The obtained results support positively for their wide applications in the area of optoelectronic and sensing based electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Eranna, G., Joshi, B.C., Runthala, D.P., Gupta, R.P.: Oxide Materials for Development of Integrated Gas Sensors: A Comprehensive Review. Cr. Rev. Sol. State Mat. Sci. 29(11), 111–88 (2004)

    Google Scholar 

  2. V.A. Coleman and C. Jagadish, 2006 Basic Properties and Applications of ZnO, Zinc Oxide Bulk, Thin Films and Nanostructures Processing, Properties and Applications, 1–20

  3. Radzimska, A.K., Jesionowski, T.: Zinc Oxide—From Synthesis to Application: A Review. Mater. 7, 2833–2881 (2014)

    Article  ADS  Google Scholar 

  4. Chee, C.Y., Nadarajah, K., Siddiqui, M.K., Wong, Y.: Optical and structural characterization of solution processed zinc oxide nanorods via hydrothermal method. Ceram. Int. 40, 9997–10004 (2014)

    Article  Google Scholar 

  5. Djurišić, A.B., Ng, A.M.C., Chen, X.Y.: ZnO nanostructures for optoelectronics: Material properties and device applications. Prog. Quantum Electron. 34(4), 191–259 (2010)

    Article  ADS  Google Scholar 

  6. Ali L. Abed, Wafaa K. Khalef and Evan T. 2021 Salim, Synthesis, Characterization and Optoelectronic device application of ZnO nano structure. J. Phys. Conf. Ser .1795

  7. Basavaraj S. Sannakashappanavar, Nandini A. Pattanashetti, C. R. Byrareddy, and Aniruddh Bahadur Yadav, 2018 “Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers”, AIP Conference Proceedings 1943, 020077

  8. Sannakashappanavar, B.S., Byrareddy, C.R., Kumar, P.S., Yadav, A.B.: Seed layer effect on different properties and UV detection, capability of hydrothermally grown ZnO nanorods over SiO2/ p-Si substrate. Superlattices Microstruct. 117, 503–514 (2018)

    Article  ADS  Google Scholar 

  9. Byrappa, K., Yoshimura, M.: Handbook of hydrothermal technology. Elsevier, Oxford, UK (2013)

    Google Scholar 

  10. Rabenau, A.: The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. Engl. 24, 1026–1040 (1985)

    Article  Google Scholar 

  11. Yin, X.T., Lv, P., Li, J., Jafari, A., Wu, F.Y., Wang, Q., Dastan, D., Shi, Z., Yu, S., Garmestani, H.: Nanostructured tungsten trioxide prepared at various growth temperatures for sensing applications. J. Alloys Compd. 825, 154105–154112 (2020)

    Article  Google Scholar 

  12. Dasi, G., Ramarajan, R., Joseph, D.P., Vijayakumar, S., Vijayakumar, S., Shim, J.-J., Arivananthan, M., Jayavel, R.: Thin Solid Films. 710, 138265 (2020)

  13. Khokhra, R., Bharti, B., Lee, H.N., Kumar, R.: Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method. Sci. Rep. 7, 15032 (2017)

    Article  ADS  Google Scholar 

  14. Dasi, G., Lavanya, T., Suneetha, S., Vijayakumar, S., Shim, J., Thangaraju, K.: Raman and X-ray photoelectron spectroscopic investigation of solution processed Alq3/ZnO hybrid thin films. Spectrochim. Acta A 265, 120377 (2022)

    Article  Google Scholar 

  15. Yu, X., Yu, X., Yan, M., Weng, T., Chen, L., Zhou, Y., Wei, J.: Lowering oxygen vacancies of ZnO nanorods via Mg-doping and their effect on polymeric diode behavior. Sens. Actuator A Phys. 312, 112163 (2020)

    Article  Google Scholar 

  16. Chen, S., Small, C.E., Amb, C.M., Subbiah, J., Lai, T.H., Tsang, S.W., Manders, J.R., Reynolds, J.R., So, F.: Inverted Polymer Solar Cells with Reduced Interface Recombination. Adv. Energy Mater. 2, 1333–1337 (2012)

    Article  Google Scholar 

  17. Verma, Arpit, Chaudhary, Priyanka, Tripathi, Ravi Kant, Yadav, B.C.: Transient photodetection studies on 2D ZnO nanostructures prepared by simple organic-solvent assisted route. Sens. Actuators A: Phys. 321, 112600 (2021)

    Article  Google Scholar 

  18. I. Loyola Poul Raj, S. Valanarasu, K. Hariprasad, Joice Sophia Ponraj, N. Chidhambaram, V. Ganesh, H. Elhosiny Ali, Yasmin Khairy, 2020 Enhancement of optoelectronic parameters of Nd-doped ZnO nanowires for photodetector applications. Opt. Mater. 109 110396

  19. Kuang, D., Li, Y., Gao, Y., Guo, J., Li, X., Shuang, Xu., Liu, B., Liu, X., Zhang, Y., Zhinong, Yu.: Performance improvement of flexible ultraviolet photodetectors based on ZnO nanorod arrays by hydrothermal method with assistance of polyethyleneimine. J. Alloys Compd. 899, 163185 (2022)

    Article  Google Scholar 

  20. Giwoong, Nam, Leem, Jae-Young.: Synthesis and fast-response of a photodetector of hydrothermally grown ZnO nanorods through the use of a graphene oxide/ZnO seed layer. RSC Adv. 5(114), 94222–94226 (2015)

    Article  ADS  Google Scholar 

  21. Sannakashappanavar, B.S., Byrareddy, C.R., Varma, S., Pattanshetti, N.A., Yadav, A.B. (2020). Deposition of ZnO Thin Film at Different Substrate Temperature Using RF Sputtering for Growth of ZnO Nanorods Using Hydrothermal Method for UV Detection. In: Shreesha, C., Gudi, R. (eds) Control Instrumentation Systems. Lecture Notes in Electrical Engineering, vol 581. Springer, Singapore

  22. Sannakashappanavar, Basavaraj S., Yadav, Aniruddh Bahadur, Byrareddy, C.R., Narasimha Murty, N.V.L.: Fabrication and characterization of Schottky diode on ultra thinZnO film and its application for UV detection. Mater. Res. Express 6, 116445 (2019)

    Article  ADS  Google Scholar 

  23. Sannakashappanavar, Basavaraj S., Yadav, Aniruddh Bahadur, Byrareddy, C.R., Narasimha Murty, N.V.L.: Synthesis of ZnOultra thinfilm based bottom gate phototransistor for UV Detection. J. Electron. Mater. 49, 5272–5280 (2020)

    Article  ADS  Google Scholar 

  24. Sannakashappanavar, B.S., Byrareddy, C.R., Pattanashetti, N.A., Yadav, A.B.: Growth of ZnO Nanorods on Different Seed Layer Thickness Using the Hydrothermal Method for UV Detection. J. Nanoelectron. Optoelectron. 14(7), 964–971 (2019)

    Article  Google Scholar 

  25. Chapi, S.: Influence of Co2+ on the Structure, Conductivity, and Electrochemical Stability of Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes: Energy Storage Devices. J. Electron. Mater. 50, 1558–1571 (2021)

    Article  ADS  Google Scholar 

  26. Chapi, S., Devendrappa, H.: Optical, electrical, thermal and electrochemical studies of spin-coated polyblend-ZnO nanocomposites. J. Mater. Sci. Mater. Electron. 27, 11974–11985 (2016)

    Article  Google Scholar 

  27. Chapi, S.: Structural and Electrochemical Properties of Polymer Blend Based ZnO Nanocomposite Solid Polymer Electrolytes by Spin-Coating Method. J. Nano. Electron. Phys. 12(2), 02043-1–02043-5 (2020)

    Article  Google Scholar 

  28. Thyda, L., Naresh, K., Joseph, J.K., et al.: Nitrogen-doped carbon quantum dots decorated ZnO nanorods array film for efficient UV photodetector applications. J. Mater. Sci. Mater. Electron. 35, 64 (2024)

    Article  Google Scholar 

  29. Al-She’irey, A.Y., Balouch, A., Mawarnis, E.R., et al.: Effect of zno seed layer annealing temperature on the growth of zno nanorods and its catalytic application. Opt. Mater. 131, 112652 (2022)

    Article  Google Scholar 

  30. Mohd Fudzi, L., Zainal, Z., Lim, H.N., Chang, S.-K., Holi, A.M.: Effect of Temperature and Growth Time on Vertically Aligned ZnO Nanorods by Simplified Hydrothermal Technique for Photoelectrochemical Cells. Mater. 11(5), 704 (2018)

  31. Mufti, N., Laila, I.K., Idiawati, R., Fuad, A., Hidayat, A., Taufiq, A.: The Effect of Growth Temperature on The Characteristics Of ZnO Nanorods And Its Optical Properties. J. Phys. Conf. Ser. 1057, 0120059 (2018)

    Article  Google Scholar 

  32. Azmi, Z.H., Mohd Aris, S.N., Abubakar, S., Sagadevan, S., Siburian, R., Paiman, S.: Effect of Seed Layer on the Growth of Zinc Oxide Nanowires by Chemical Bath Deposition Method. Coatings 12(4), 474 (2022)

    Article  Google Scholar 

  33. Singh, P., Simanjuntak, F.M., Hu, L.-L., Tseng, T.-Y., Zan, H.-W., Chu, J.P.: Negative Effects of Annealed Seed Layer on the Performance of ZnO-Nanorods Based Nitric Oxide Gas Sensor. Sens. 22(1), 390 (2022)

    Article  ADS  Google Scholar 

  34. Karaköse, E., Çolak, H.: Effect of substrate temperature on the structural properties of ZnO nanorods. Energy 141, 50–55 (2017)

    Article  Google Scholar 

  35. Song, J., Lim, S.: Effect of Seed Layer on the Growth of ZnO Nanorods. J. Phys. Chem. C 111(2), 596–600 (2007)

    Article  Google Scholar 

  36. Foo, K.L., Hashim, U., Muhammad, K., et al.: Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res. Lett. 9, 429 (2014)

    Article  ADS  Google Scholar 

  37. ElZein, B., Salah, N., Barham, A.S., Elrashidi, A., Al Khatab, M., Jabbour, G.: Influence of Temperature on the Growth of Vertically Aligned ZnO Nanowires in Wet Oxygen Environment. Crystals 13(6), 876 (2023)

    Article  Google Scholar 

  38. Kim, S.-Y., Lee, J.-H., Kim, J.-J., Heo, Y.-W.: Effects of Temperature, Target/Substrate Distance, and Background Pressure on Growth of ZnO Nanorods by Pulsed Laser Deposition. J. Nanosci. Nanotechnol. 14(12), 9020–9024 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the INUP (Indian Nanoelectronics User Program) at IIT, Bombay, for providing the research facilities for carrying out the entire experimental work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the present work and device fabrication. Material preparation, data collection and analysis were performed by Basavaraj S Sannakashappanavar and Dr. Aniruddh Bahadur Yadav. The first draft of the manuscript was written by Nandini A Pattanashetti and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Basavaraj S. Sannakashappanavar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sannakashappanavar, B.S., Pattanashetti, N.A. & Yadav, A.B. Effect of deposition temperature on growth of Zinc oxide Nanorods on Zinc oxide thin film for Optoelectronics and Sensing Applications. Interactions 245, 113 (2024). https://doi.org/10.1007/s10751-024-01952-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-01952-8

Keywords

Navigation