Skip to main content
Log in

Optimisation of electrical Impedance tomography image reconstruction error using heuristic algorithms

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Preventing living tissues’ direct exposure to ionising radiation has resulted in tremendous growth in medical imaging and e-health, enhancing intensive care of perilous patients and helping to improve quality of life. Moreover, the practice of image-reconstruction instruments that utilise ionising radiation significantly impacts the patient’s health. Prolonged or frequent exposure to ionising radiation is linked to several illnesses like cancer. These factors urged the advancement of non-invasive approaches, for instance, Electrical Impedance Tomography (EIT), a portable, non-invasive, low-cost, and safe imaging method. EIT image reconstruction still demands more exploitation, as it is an inverse and ill-conditioned problem. Numerous numerical techniques are used to answer this problem without producing anatomically unpredictable outcomes. Evolutionary Computational techniques can substitute conventional methods that usually create low-resolution blurry images. EIT reconstruction techniques optimise the relative error of reconstruction using population-based optimisation methods presented in this work. Three advanced optimisation methods have been developed to facilitate the iterative procedure for avoiding anatomically erratic solutions. Three different optimising techniques, namely, (a) Advanced Particle Swarm Optimisation Algorithm, (b) Advanced Gravitational Search Algorithm, and (c) Hybrid Gravitational Search Particle Swarm Optimization Algorithm (HGSPSO), are used. By utilising the advantages of these proposed techniques, the convergence and solution stability performance is improved. EIT images were obtained from the EIDORS library database for two case studies. The image reconstruction was optimised using the three proposed algorithms. EIDORS library was used for generating and solving forward and reverse problems. Two case studies were undertaken, i.e. circular tank simulation and gastric emptying. Thus, the results are analysed and presented as a real-world application of population-based optimisation methods. Results obtained from the proposed methods are quantitatively assessed with ground truth images using the relative mean squared error, confirming that a low error value is reached in the results. The HGSPSO algorithm performs better than the other proposed methods regarding solution quality and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

PSO:

Particle swarm optimisation

EIT:

Electrical impedance tomography

HGSPSO:

Hybrid gravitational search particle swarm optimization

FEM:

Finite element method

GSA:

Gravitational search algorithm

References

Download references

Funding

No funding is associated with this research.

Author information

Authors and Affiliations

Authors

Contributions

TAK wrote the main manuscript, SA, AAR and SHL have reviewed the work, TAK prepared the figures and pseudocodes, SAR and TAK have made a substantial contribution to the concept or design of the article, Supervision has been done by SHL. All the authors have reviewed the final manuscript.

Corresponding author

Correspondence to Talha A. Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T.A., Ling, S.H. & Rizvi, A.A. Optimisation of electrical Impedance tomography image reconstruction error using heuristic algorithms. Artif Intell Rev 56, 15079–15099 (2023). https://doi.org/10.1007/s10462-023-10527-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-023-10527-y

Keywords

Navigation