Skip to main content

Advertisement

Log in

EMT-induced immune evasion: connecting the dots from mechanisms to therapy

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Epithelial–mesenchymal transition (EMT) is a dynamic program crucial for organismal development and tissue regeneration. Unfortunately, this program is often hijacked by epithelial tumors to facilitate metastasis. Beyond its role in cancer spread, EMT increases cancer cell survival by activating stem cell programs and bypassing apoptotic programs. Importantly, the capacity of EMT to enforce tumor progression by altering the tumor cell phenotype without triggering immune responses opens the intriguing possibility of a mechanistic link between EMT-driven cancers and immune evasion. Indeed, EMT has been acknowledged as a of driver immune evasion, but the mechanisms are still evolving. Here, we review recent insights into the influence of EMT on tumor immune evasion. Specifically, we focus on the mechanistic roles of EMT in immune escape as the basis that may provide a platform for innovative therapeutic approaches in advanced tumors. We summarize promising therapeutic approaches currently in clinical trials and trending preclinical studies aimed at reinvigorating the tumor microenvironment to create immune-permissive conditions that facilitates immune-mediated tumor clearance. We anticipate that this will assist researchers and pharmaceutical companies in understanding how EMT compromises the immune response, potentially paving the way for effective cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

EMT:

Epithelial–mesenchymal transition

MET:

Mesenchymal–epithelial transition

TME:

Tumor microenvironment

HLA:

Human leukocyte antigen

CSCs:

Cancer stem cells

EMP:

Epithelial–mesenchymal plasticity

ECM:

Extracellular matrix

EMT-TF:

Epithelial–mesenchymal transition transcription factors

MHC:

Major histocompatibility class

β2M:

β2-microglobulin

CTLS:

Cytotoxic T lymphocytes

TGF-β:

Transforming growth factor beta

TAP:

Transporters associated with antigen processing

IS:

Immunoproteasome

PSMB :

Proteasome subunit beta type

NSCLC:

Nonsmall cell lung cancer

KLRG1:

Killer lectin-like receptor G1

E-cadherin:

Epithelial cadherin

KIRs:

Killer immunoglobin-like receptors

IFN-γ:

Interferon gamma

TCR:

T-cell receptor

LC3:

Light chain 3

ATG:

Autophagy-related

ULK:

Unc-51-like autophagy-activating kinase

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

PD-1:

Programmed cell death protein 1

TIM-3:

T-cell immunoglobulin domain and mucin domain-3

LAG-3:

Lymphocyte activation gene 3

TIGIT:

T-cell immunoreceptor with Ig and ITIM domains

APCs:

Antigen presenting cells

PD-L1:

Programmed death ligand

MDSCs:

Myeloid-derived suppressor cells

TRegs:

Regulatory T cells

TAMs:

Tumor-associated macrophages

DCreg:

Regulatory dendritic cells

IDO:

Indoleamine 2,3-dioxygenase

CCL:

Chemokine (CC motif) ligand

CXCL:

Chemokine (CXC motif) ligand

NF-κβ:

Nuclear factor kappa B

CXCR:

CXC chemokine receptor

HDACs:

Histone deacetylases

LSD:

Lysine-specific histone demethylase

References

  1. Adedokun KA, Imodoye SO, Bello IO, Lanihun A, Bello IO. Therapeutic potentials of medicinal plants for the treatment of cancer and significance of computational tools in anticancer drug discovery. In: Egbuna C, Rudrapal M, Tijjani H, editors. Phytochemistry, computational tools, and databases in drug discovery. Amsterdam: Elsevier; 2023.

    Google Scholar 

  2. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Imodoye SO, Adedokun KA, Muhammed AO, Bello IO, Muhibi MA, Oduola T, Oyenike MA. Understanding the complex milieu of epithelial-mesenchymal transition in cancer metastasis: new insight into the roles of transcription factors. Front Oncol. 2021;11:762817.

  4. Nieto MA, Cano A. The epithelial–mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol. 2012;22:361–8.

    CAS  PubMed  Google Scholar 

  5. Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 2019;38:53.

    PubMed  PubMed Central  Google Scholar 

  6. Chang R, Zhang Y, Zhang P, Zhou Q. Snail acetylation by histone acetyltransferase p300 in lung cancer. Thorac Cancer. 2017;8:131–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Manfioletti G, Fedele M. Epithelial–mesenchymal transition (EMT) 2021. Int J Mol Sci. 2022;23:5848.

    PubMed  PubMed Central  Google Scholar 

  8. Galbraith M, Levine H, Onuchic JN, Jia D. Decoding the coupled decision-making of the epithelial-mesenchymal transition and metabolic reprogramming in cancer. iScience. 2023;26(1):105719.

  9. Tan T, Shi P, Abbas MN, Wang Y, Xu J, Chen Y, Cui H. Epigenetic modification regulates tumor progression and metastasis through EMT (review). Int J Oncol. 2022;60:1–17.

    Google Scholar 

  10. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–26.

    CAS  PubMed  Google Scholar 

  11. Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022;15:129.

    PubMed  PubMed Central  Google Scholar 

  12. Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multitool for tumor progression. EMBO J. 2021;40:e108647.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Coghlin C, Murray GI. Current and emerging concepts in tumor metastasis. J Pathol. 2010;222:1–15.

    CAS  PubMed  Google Scholar 

  14. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    CAS  PubMed  Google Scholar 

  16. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009;15:195–206.

    CAS  PubMed  Google Scholar 

  17. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, Signori E, Honoki K, Georgakilas AG, Amin A, Helferich WG, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Keith WN, Bilsland A, Bhakta D, Halicka D, Fujii H, Aquilano K, Ashraf SS, Nowsheen S, Yang X, Choi BK, Kwon BS. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35:S185–98.

    PubMed  Google Scholar 

  18. Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol. 2016;27:1492–504.

    CAS  PubMed  Google Scholar 

  19. Patel SA, Minn AJ. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity. 2018;48:417–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    PubMed  Google Scholar 

  21. Zheng H, Kang Y. Multilayer control of the EMT master regulators. Oncogene. 2014;33:1755–63.

    CAS  PubMed  Google Scholar 

  22. Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, Hamanishi J, Baba T, Matsumura N, Mandai M. Tumor immune microenvironment during epithelial-mesenchymal transition. Clin Cancer Res. 2021;27:4669–79.

    CAS  PubMed  Google Scholar 

  23. Romeo E, Caserta CA, Rumio C, Marcucci F. The vicious cross-talk between tumor cells with an EMT phenotype and cells of the immune system. Cells. 2019;8:460.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Horn LA, Fousek K, Palena C. Tumor plasticity and resistance to immunotherapy. Trends Cancer. 2020;6:432–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Seliger B. Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies. HLA. 2016;88:213–20.

    CAS  PubMed  Google Scholar 

  26. López-Soto A, Huergo-Zapico L, Galván JA, Rodrigo L, de Herreros AG, Astudillo A, Gonzalez S. Epithelial-mesenchymal transition induces an antitumor immune response mediated by NKG2D receptor. J Immunol. 2013;190:4408–19.

    PubMed  Google Scholar 

  27. Lee JH, Shklovskaya E, Lim SY, Carlino MS, Menzies AM, Stewart A, Pedersen B, Irvine M, Alavi S, Yang JYH, Strbenac D, Saw RPM, Thompson JF, Wilmott JS, Scolyer RA, Long GV, Kefford RF, Rizos H. Transcriptional downregulation of MHC class I and melanoma de differentiation in resistance to PD-1 inhibition. Nat Commun. 2020;11:1897.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dongre A, Rashidian M, Reinhardt F, Bagnato A, Keckesova Z, Ploegh HL, Weinberg RA. Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Can Res. 2017;77:3982–9.

    CAS  Google Scholar 

  29. Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn Y-H, Byers LA, Zhang X, Yi X, Dwyer D, Lin W, Diao L, Wang J, Roybal JD, Patel M, Ungewiss C, Peng D, Antonia S, Mediavilla-Varela M, Robertson G, Jones S, Suraokar M, Welsh JW, Erez B, Wistuba II, Chen L, Peng D, Wang S, Ullrich SE, Heymach JV, Kurie JM, Qin FX-F. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumor cell PD-L1 expression and intratumoral immunosuppression. Nat Commun. 2014;5:5241.

    CAS  PubMed  Google Scholar 

  30. Dongre A, Rashidian M, Eaton EN, Reinhardt F, Thiru P, Zagorulya M, Nepal S, Banaz T, Martner A, Spranger S, Weinberg RA. Direct and indirect regulators of epithelial-mesenchymal transition–mediated immunosuppression in breast carcinomas, cancer. Discovery. 2021;11:1286–305.

    CAS  Google Scholar 

  31. Chen X-H, Liu Z-C, Zhang G, Wei W, Wang X-X, Wang H, Ke H-P, Zhang F, Wang H-S, Cai S-H, Du J. TGF-β and EGF induced HLA-I downregulation is associated with epithelial-mesenchymal transition (EMT) through upregulation of snail in prostate cancer cells. Mol Immunol. 2015;65:34–42.

    CAS  PubMed  Google Scholar 

  32. Aguilera TA, Giaccia AJ. Molecular pathways: oncologic pathways and their role in T-cell exclusion and immune evasion—a new role for the AXL receptor tyrosine kinase. Clin Cancer Res. 2017;23:2928–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Maccalli C, Rasul KI, Elawad M, Ferrone S. The role of cancer stem cells in the modulation of antitumor immune responses. Semin Cancer Biol. 2018;53:189–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tu J, Xu H, Ma L, Li C, Qin W, Chen X, Yi M, Sun L, Liu B, Yuan X. Nintedanib enhances the efficacy of PD-L1 blockade by upregulating MHC-I and PD-L1 expression in tumor cells. Theranostics. 2022;12:747–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cornel AM, Mimpen IL, Nierkens S. MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers. 2020;12:1760.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Morozov AV, Karpov VL. Proteasomes and several aspects of their heterogeneity relevant to cancer. Front Oncol. 2019;9:761.

    PubMed  PubMed Central  Google Scholar 

  37. Tripathi SC, Peters HL, Taguchi A, Katayama H, Wang H, Momin A, Jolly MK, Celiktas M, Rodriguez-Canales J, Liu H, Behrens C, Wistuba II, Ben-Jacob E, Levine H, Molldrem JJ, Hanash SM, Ostrin EJ. Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proc Natl Acad Sci. 2016;113:E1555–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalaora S, Lee JS, Barnea E, Levy R, Greenberg P, Alon M, Yagel G, Bar Eli G, Oren R, Peri A, Patkar S, Bitton L, Rosenberg SA, Lotem M, Levin Y, Admon A, Ruppin E, Samuels Y. Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nat Commun. 2020;11:896.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Anfossi N, André P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, Romagné F, Ugolini S, Vivier E. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006;25:331–42.

    CAS  PubMed  Google Scholar 

  40. Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol. 2023;23:90–105.

    CAS  PubMed  Google Scholar 

  41. Novelli L, Barbati C, Capuano C, Recalchi S, Ceccarelli F, Vomero M, Alessandri C, Morrone S, Conti F. KLRG1 is reduced on NK cells in SLE patients, inversely correlates with disease activity and is modulated by hydroxychloroquine in vitro. Lupus. 2023;32:549–59.

    CAS  PubMed  Google Scholar 

  42. Lasek W, Zagożdżon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother. 2014;63:419–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. He Y, Bunn PA, Zhou C, Chan D. KIR 2D (L1, L3, L4, S4) and KIR 3DL1 protein expression in non-small cell lung cancer. Oncotarget. 2016;7:82104–11.

    PubMed  PubMed Central  Google Scholar 

  44. Chockley PJ, Chen J, Chen G, Beer DG, Standiford TJ, Keshamouni VG. Epithelial-mesenchymal transition leads to NK cell–mediated metastasis-specific immunosurveillance in lung cancer. J Clin Investig. 2018;128:1384–96.

    PubMed  PubMed Central  Google Scholar 

  45. Exposito F, Redrado M, Houry M, Hastings K, Molero-Abraham M, Lozano T, Solorzano JL, Ortega JS, Andradas V, Amat R, Redin E, Leon S, Legarra N, García J, Serrano D, Valencia K, Robles-Oteiza C, Foggetti G, Felip E, Lasarte JJ, Paz-Ares L, Zugazagoitia J, Politi K, Montuenga LM, Calvo A. Abstract 1124: PTEN loss confers resistance to anti-PD-1 therapy in NSCLC by increasing tumor infiltration of T regulatory cells. Can Res. 2023;83:1124–1124.

    Google Scholar 

  46. Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery J-P, Chouaib S. New insights into the role of EMT in tumor immune escape. Mol Oncol. 2017;11:824–46.

    PubMed  PubMed Central  Google Scholar 

  47. Finetti F, Cassioli C, Baldari CT. Transcellular communication at the immunological synapse: a vesicular traffic-mediated mutual exchange. F1000Res. 2017;6:1880.

    PubMed  PubMed Central  Google Scholar 

  48. Lerner EC, Woroniecka KI, D’Anniballe VM, Wilkinson DS, Mohan AA, Lorrey SJ, Waibl-Polania J, Wachsmuth LP, Miggelbrink AM, Jackson JD, Cui X, Raj JA, Tomaszewski WH, Cook SL, Sampson JH, Patel AP, Khasraw M, Gunn MD, Fecci PE. CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D–NKG2DL axis. Nat Cancer. 2023.

  49. Mullins RDZ, Pal A, Barrett TF, Heft Neal ME, Puram SV. Epithelial-mesenchymal plasticity in tumor immune evasion. Cancer Res. 2022;82:2329–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Terry S, Buart S, Tan TZ, Gros G, Noman MZ, Lorens JB, Mami-Chouaib F, Thiery JP, Chouaib S. Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: consequences on susceptibility to cell-mediated cytotoxicity. Oncoimmunology. 2017;6:e1271858.

    PubMed  PubMed Central  Google Scholar 

  51. Akalay I, Tan TZ, Kumar P, Janji B, Mami-Chouaib F, Charpy C, Vielh P, Larsen AK, Thiery JP, Sabbah M, Chouaib S. Targeting WNT1-inducible signaling pathway protein 2 alters human breast cancer cell susceptibility to specific lysis through regulation of KLF-4 and miR-7 expression. Oncogene. 2015;34:2261–71.

    CAS  PubMed  Google Scholar 

  52. Akalay I, Janji B, Hasmim M, Noman MZ, André F, De Cremoux P, Bertheau P, Badoual C, Vielh P, Larsen AK, Sabbah M, Tan TZ, Keira JH, Ying Hung NT, Thiery JP, Mami-Chouaib F, Chouaib S. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell–mediated lysis. Cancer Res. 2013;73:2418–27.

    CAS  PubMed  Google Scholar 

  53. Izdebska M, Zielińska W, Hałas-Wiśniewska M, Grzanka A. Involvement of actin and actin-binding proteins in carcinogenesis. Cells. 2020;9:2245.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Corgnac S, Damei I, Gros G, Caidi A, Terry S, Chouaib S, Deloger M, Mami-Chouaib F. Cancer stem-like cells evade CD8(+)CD103(+) tumor-resident memory T (T(RM)) lymphocytes by initiating an epithelial-to-mesenchymal transition program in a human lung tumor model. J Immunother Cancer. 2022;10.

  55. Abd Hamid M, Colin-York H, Khalid-Alham N, Browne M, Cerundolo L, Chen J-L, Yao X, Rosendo-Machado S, Waugh C, Maldonado-Perez D, Bowes E, Verrill C, Cerundolo V, Conlon CP, Fritzsche M, Peng Y, Dong T. Self-maintaining CD103+ cancer-specific T cells are highly energetic with rapid cytotoxic and effector responses. Cancer Immunol Res. 2020;8:203–16.

    CAS  PubMed  Google Scholar 

  56. Akalay I, Janji B, Hasmim M, Noman MZ, Thiery JP, Mami-Chouaib F, Chouaib S. EMT impairs breast carcinoma cell susceptibility to CTL-mediated lysis through autophagy induction. Autophagy. 2013;9:1104–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jachetti E, Caputo S, Mazzoleni S, Brambillasca CS, Parigi SM, Grioni M, Piras IS, Restuccia U, Calcinotto A, Freschi M, Bachi A, Galli R, Bellone M. Tenascin-C protects cancer stem–like cells from immune surveillance by arresting T-cell activation. Can Res. 2015;75:2095–108.

    CAS  Google Scholar 

  58. Klionsky KRPADJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20:460–73.

    PubMed  PubMed Central  Google Scholar 

  59. Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021;22:733–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo MI, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen E-L, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez-Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera RM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Sadoshima J, Santambrogio L, Scorrano L, Simon H-U, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J. 2021;40:e108863.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Russell RC, Guan K-L. The multifaceted role of autophagy in cancer. EMBO J. 2022;41:e110031.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 2019;9:1167–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Young TM, Reyes C, Pasnikowski E, Castanaro C, Wong C, Decker CE, Chiu J, Song H, Wei Y, Bai Y, Zambrowicz B, Thurston G, Daly C. Autophagy protects tumors from T-cell–mediated cytotoxicity via inhibition of TNFα-induced apoptosis. Sci Immunol. 2020;5:eabb9561.

    CAS  PubMed  Google Scholar 

  64. Li Z-L, Zhang H-L, Huang Y, Huang J-H, Sun P, Zhou N-N, Chen Y-H, Mai J, Wang Y, Yu Y, Zhou L-H, Li X, Yang D, Peng X-D, Feng G-K, Tang J, Zhu X-F, Deng R. Autophagy deficiency promotes triple-negative breast cancer resistance to T-cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lawson KA, Sousa CM, Zhang X, Kim E, Akthar R, Caumanns JJ, Yao Y, Mikolajewicz N, Ross C, Brown KR, Zid AA, Fan ZP, Hui S, Krall JA, Simons DM, Slater CJ, De Jesus V, Tang L, Singh R, Goldford JE, Martin S, Huang Q, Francis EA, Habsid A, Climie R, Tieu D, Wei J, Li R, Tong AHY, Aregger M, Chan KS, Han H, Wang X, Mero P, Brumell JH, Finelli A, Ailles L, Bader G, Smolen GA, Kingsbury GA, Hart T, Kung C, Moffat J. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature. 2020;586:120–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Han LL, Jia L, Wu F, Huang C. Sirtuin6 (SIRT6) promotes the EMT of hepatocellular carcinoma by stimulating autophagic degradation of E-cadherin. Mol Cancer Res. 2019;17:2267–80.

    CAS  PubMed  Google Scholar 

  67. Bao Y, Ding Z, Zhao P, Li J, Chen P, Zheng J, Qian Z. Autophagy inhibition potentiates the anti-EMT effects of alteronol through TGF-β/Smad3 signaling in melanoma cells. Cell Death Dis. 2020;11:223.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fuhrman CA, Yeh W-I, Seay HR, Saikumar Lakshmi P, Chopra G, Zhang L, Perry DJ, McClymont SA, Yadav M, Lopez M-C, Baker HV, Zhang Y, Li Y, Whitley M, von Schack D, Atkinson MA, Bluestone JA, Brusko TM. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J Immunol. 2015;195:145–55.

    CAS  PubMed  Google Scholar 

  69. Wei T, Zhang J, Qin Y, Wu Y, Zhu L, Lu L, Tang G, Shen Q. Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small cell lung cancer patients. Am J Cancer Res. 2015;5:2190–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Derakhshani A, Hashemzadeh S, Asadzadeh Z, Shadbad MA, Rasibonab F, Safarpour H, Jafarlou V, Solimando AG, Racanelli V, Singh PK, Najafi S, Javadrashid D, Brunetti O, Silvestris N, Baradaran B. Cytotoxic T-lymphocyte antigen-4 in colorectal cancer: another therapeutic side of capecitabine. Cancers. 2021;13:2414.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Noman MZ, Van Moer K, Marani V, Gemmill RM, Tranchevent L-C, Azuaje F, Muller A, Chouaib S, Thiery JP, Berchem G, Janji B. CD47 is a direct target of SNAI1 and ZEB1 and its blockade activates the phagocytosis of breast cancer cells undergoing EMT. OncoImmunology. 2018;7:e1345415.

    PubMed  PubMed Central  Google Scholar 

  72. Jiang B, Zhang T, Liu F, Sun Z, Shi H, Hua D, Yang C. The costimulatory molecule B7–H3 promotes the epithelial-mesenchymal transition in colorectal cancer. Oncotarget. 2016;7:31755–71.

    PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Du J, Gao Z, Sun H, Mei M, Wang Y, Ren Y, Zhou X. Evolving landscape of PD-L2: bring new light to checkpoint immunotherapy. Br J Cancer. 2023;128:1196–207.

    CAS  PubMed  Google Scholar 

  74. Raimondi C, Carpino G, Nicolazzo C, Gradilone A, Gianni W, Gelibter A, Gaudio E, Cortesi E, Gazzaniga P. PD-L1 and epithelial-mesenchymal transition in circulating tumor cells from non-small cell lung cancer patients: a molecular shield to evade immune system? OncoImmunology. 2017;6:e1315488.

    PubMed  PubMed Central  Google Scholar 

  75. Nunes-Xavier CE, Angulo JC, Pulido R, López JI. A critical insight into the clinical translation of PD-1/PD-L1 blockade therapy in clear cell renal cell carcinoma. Curr Urol Rep. 2019;20:1.

    PubMed  Google Scholar 

  76. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    PubMed  PubMed Central  Google Scholar 

  77. Hou Y-C, Chao Y-J, Hsieh M-H, Tung H-L, Wang H-C, Shan Y-S. Low CD8+ T-cell infiltration and high PD-L1 expression are associated with level of CD44+/CD133+ cancer stem cells and predict an unfavorable prognosis in pancreatic cancer. Cancers. 2019;11:541.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu C, Fillmore CM, Koyama S, Wu H, Zhao Y, Chen Z, Herter-Sprie GS, Akbay EA, Tchaicha JH, Altabef A, Reibel JB, Walton Z, Ji H, Watanabe H, Jänne PA, Castrillon DH, Rustgi AK, Bass AJ, Freeman GJ, Padera RF, Dranoff G, Hammerman PS, Kim CF, Wong KK. Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell. 2014;25:590–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang Z, Huo Y, Zhou S, Guo J, Ma X, Li T, Fan C, Wang L. Cancer cell-intrinsic XBP1 drives immunosuppressive reprogramming of intratumoral myeloid cells by promoting cholesterol production. Cell Metab. 2022;34:2018-2035.e2018.

    CAS  PubMed  Google Scholar 

  80. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T-cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16:151–67.

    PubMed  Google Scholar 

  82. Ye L-Y, Chen W, Bai X-L, Xu X-Y, Zhang Q, Xia X-F, Sun X, Li G-G, Hu Q-D, Fu Q-H, Liang T-B. Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Can Res. 2016;76:818–30.

    CAS  Google Scholar 

  83. Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH, Chen NJ, Yang MH. Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell. 2014;26:534–48.

    CAS  PubMed  Google Scholar 

  84. Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP, Yang J. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Can Res. 2013;73:662–71.

    CAS  Google Scholar 

  85. Taki M, Abiko K, Baba T, Hamanishi J, Yamaguchi K, Murakami R, Yamanoi K, Horikawa N, Hosoe Y, Nakamura E, Sugiyama A, Mandai M, Konishi I, Matsumura N. Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nat Commun. 2018;9:1685.

    PubMed  PubMed Central  Google Scholar 

  86. Xiang Z, Jiang DP, Xia GG, Wei ZW, Chen W, He Y, Zhang CH. CXCL1 expression is correlated with Snail expression and affects the prognosis of patients with gastric cancer. Oncol Lett. 2015;10:2458–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Faget J, Groeneveld S, Boivin G, Sankar M, Zangger N, Garcia M, Guex N, Zlobec I, Steiner L, Piersigilli A, Xenarios I, Meylan E. Neutrophils and snail orchestrate the establishment of a pro-tumor microenvironment in lung cancer. Cell Rep. 2017;21:3190–204.

    CAS  PubMed  Google Scholar 

  88. Yanagawa J, Walser TC, Zhu LX, Hong L, Fishbein MC, Mah V, Chia D, Goodglick L, Elashoff DA, Luo J, Magyar CE, Dohadwala M, Lee JM, St. John MA, Strieter RM, Sharma S, Dubinett SM. Snail promotes CXCR2 ligand dependent tumor progression in non-small cell lung carcinoma. Clin Cancer Res. 2009;15:6820–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Katsura A, Tamura Y, Hokari S, Harada M, Morikawa M, Sakurai T, Takahashi K, Mizutani A, Nishida J, Yokoyama Y, Morishita Y, Murakami T, Ehata S, Miyazono K, Koinuma D. ZEB1-regulated inflammatory phenotype in breast cancer cells. Mol Oncol. 2017;11:1241–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 2021;6:362.

    PubMed  PubMed Central  Google Scholar 

  91. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Can Res. 2005;65:3044–8.

    CAS  Google Scholar 

  92. Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J. Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020;11:938.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang J, Zhang Y, Yang Z, Cheng D, Zhang H, Wei L, Liu C, Yan F, Li C, Dong G, Wang C, Shi D, Xiong H. Inducible nitric oxide synthase-expressing myeloid-derived suppressor cells regulated by interleukin 35 contribute to the pathogenesis of psoriasis. Front Immunol. 2023;14:1091541.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tu E, Chia PZC, Chen W. TGFβ in T-cell biology and tumor immunity: Angel or devil? Cytokine Growth Factor Rev. 2014;25:423–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Razavi AS, Mohtashami M, Razi S, Rezaei N. TGF-β signaling and the interaction between platelets and T cells in tumor microenvironment: Foes or friends? Cytokine. 2022;150:155772.

    CAS  PubMed  Google Scholar 

  96. Joffroy CM, Buck MB, Stope MB, Popp SL, Pfizenmaier K, Knabbe C. Antiestrogens induce transforming growth factor β–mediated immunosuppression in breast cancer. Can Res. 2010;70:1314–22.

    CAS  Google Scholar 

  97. Wu X, Xiao Y, Guo D, Zhang Z, Liu M. Reduced NK cell cytotoxicity by papillomatosis-derived TGF-β contributing to low-risk HPV persistence in JORRP patients. Front Immunol. 2022;13:849493.

    PubMed  PubMed Central  Google Scholar 

  98. Su S, Liu Q, Chen J, Chen J, Chen F, He C, Huang D, Wu W, Lin L, Huang W, Zhang J, Cui X, Zheng F, Li H, Yao H, Su F, Song E. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 2014;25:605–20.

    PubMed  Google Scholar 

  99. Sangaletti S, Tripodo C, Santangelo A, Castioni N, Portararo P, Gulino A, Botti L, Parenza M, Cappetti B, Orlandi R, Tagliabue E, Chiodoni C, Colombo MP. Mesenchymal transition of high-grade breast carcinomas depends on extracellular matrix control of myeloid suppressor cell activity. Cell Rep. 2016;17:233–48.

    CAS  PubMed  Google Scholar 

  100. Feng Y-L, Chen D-Q, Vaziri ND, Guo Y, Zhao Y-Y. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev. 2020;40:54–78.

    PubMed  Google Scholar 

  101. Patrik-Iwuanyanwu K, Egbuna C, Onyeike EN, Uche CZ, Ogoke UP, Riaz M, Ibezim EN, Khan J, Adedokun KA, Imodoye SO. Food Sci Nutr. 2023.

  102. Egbuna C, Patrick-Iwuanyanwu KC, Onyeike EN, Khan J, Palai S, Patel SB, Parmar VK, Kushwaha G, Singh O, Jeevanandam J, Kumarasamy S. Phytochemicals and bioactive compounds effective against acute myeloid leukemia: A systematic review. Food Sci Nutr. 2023.

  103. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol. 2023;95:120–39.

    CAS  PubMed  Google Scholar 

  105. Trelford CB, Dagnino L, Di Guglielmo GM. Transforming growth factor-β in tumor development. Front Mol Biosci. 2022;9:991612.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hata A, Chen YG. TGF-β signaling from receptors to smads. Cold Spring Harb Perspect Biol. 2016;8:a022061.

    PubMed  PubMed Central  Google Scholar 

  107. Jonckheere S, Adams J, De Groote D, Campbell K, Berx G, Goossens S. Epithelial-mesenchymal transition (EMT) as a therapeutic target. Cells Tissues Organs. 2021;211:157–82.

    PubMed  Google Scholar 

  108. Turati M, Mousset A, Issa N, Turtoi A, Ronca R. TGF-β mediated drug resistance in solid cancer. Cytokine Growth Factor Rev. 2023;71–72:54–65.

    PubMed  Google Scholar 

  109. Yingling JM, McMillen WT, Yan L, Huang H, Sawyer JS, Graff J, Clawson DK, Britt KS, Anderson BD, Beight DW, Desaiah D, Lahn MM, Benhadji KA, Lallena MJ, Holmgaard RB, Xu X, Zhang F, Manro JR, Iversen PW, Iyer CV, Brekken RA, Kalos MD, Driscoll KE. Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-in-class transforming growth factor-β receptor type I inhibitor. Oncotarget. 2018;9:6659–77.

    PubMed  Google Scholar 

  110. Holmgaard RB, Schaer DA, Li Y, Castaneda SP, Murphy MY, Xu X, Inigo I, Dobkin J, Manro JR, Iversen PW, Surguladze D, Hall GE, Novosiadly RD, Benhadji KA, Plowman GD, Kalos M, Driscoll KE. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes antitumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J Immunother Cancer. 2018;6:47.

    PubMed  PubMed Central  Google Scholar 

  111. Son JY, Park S-Y, Kim S-J, Lee SJ, Park S-A, Kim M-J, Kim SW, Kim D-K, Nam J-S, Sheen YY. EW-7197, a Novel ALK-5 kinase inhibitor, potently inhibits breast to lung metastasis. Mol Cancer Ther. 2014;13:1704–16.

  112. Hamilton DH, Griner LM, Keller JM, Hu X, Southall N, Marugan J, David JM, Ferrer M, Palena C. Targeting estrogen receptor signaling with fulvestrant enhances immune and chemotherapy-mediated cytotoxicity of human lung cancer. Clin Cancer Res. 2016;22:6204–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Basu S, Cheriyamundath S, Ben-Ze’ev A. Cell-cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Res. 2018;7:100.

    Google Scholar 

  114. Hu W, Wang Z, Zhang S, Lu X, Wu J, Yu K, Ji A, Lu W, Wang Z, Wu J, Jiang C. IQGAP1 promotes pancreatic cancer progression and epithelial-mesenchymal transition (EMT) through Wnt/β-catenin signaling. Sci Rep. 2019;9:7539.

    PubMed  PubMed Central  Google Scholar 

  115. Yang W, Li Y, Gao R, Xiu Z, Sun T. MHC class I dysfunction of glioma stem cells escapes from CTL-mediated immune response via activation of Wnt/β-catenin signaling pathway. Oncogene. 2020;39:1098–111.

    CAS  PubMed  Google Scholar 

  116. Yang S, Liu Y, Li M-Y, Ng CSH, Yang S-L, Wang S, Zou C, Dong Y, Du J, Long X, Liu L-Z, Wan IYP, Mok T, Underwood MJ, Chen GG. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer. 2017;16:124.

    PubMed  PubMed Central  Google Scholar 

  117. Sim WJ, Iyengar PV, Lama D, Lui SKL, Ng HC, Haviv-Shapira L, Domany E, Kappei D, Tan TZ, Saei A, Jaynes PW, Verma CS, Kumar AP, Rouanne M, Ha HK, Radulescu C, ten Dijke P, Eichhorn PJA, Thiery JP. c-Met activation leads to the establishment of a TGFβ-receptor regulatory network in bladder cancer progression. Nat Commun. 2019;10:4349.

    PubMed  PubMed Central  Google Scholar 

  118. Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-β targeted cancer therapy. Int J Biol Sci. 2012;8:964–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P, Brunton VG, Pilarsky C, Winkler TH, Brabletz S, Stemmler MP, Brabletz T. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol. 2017;19:518–29.

    CAS  PubMed  Google Scholar 

  120. Addison JB, Voronkova MA, Fugett JH, Lin C-C, Linville NC, Trinh B, Livengood RH, Smolkin MB, Schaller MD, Ruppert JM, Pugacheva EN, Creighton CJ, Ivanov AV. Functional hierarchy and cooperation of EMT master transcription factors in breast cancer metastasis. Mol Cancer Res. 2021;19:784–98.

    PubMed  PubMed Central  Google Scholar 

  121. Lin Y, Wu Y, Li J, Dong C, Ye X, Chi Y-I, Evers BM, Zhou BP. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J. 2010;29:1803–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Egolf S, Aubert Y, Doepner M, Anderson A, Maldonado-Lopez A, Pacella G, Lee J, Ko EK, Zou J, Lan Y, Simpson CL, Ridky T, Capell BC. LSD1 inhibition promotes epithelial differentiation through derepression of fate-determining transcription factors. Cell Rep. 2019;28:1981-1992.e1987.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nagasawa S, Sedukhina AS, Nakagawa Y, Maeda I, Kubota M, Ohnuma S, Tsugawa K, Ohta T, Roche-Molina M, Bernal JA, Narváez AJ, Jeyasekharan AD, Sato K. LSD1 overexpression is associated with poor prognosis in basal-like breast cancer, and sensitivity to PARP inhibition. PLoS ONE. 2015;10:e0118002.

    PubMed  PubMed Central  Google Scholar 

  124. Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol. 2019;12:129.

    PubMed  PubMed Central  Google Scholar 

  125. Ferrari-Amorotti G, Fragliasso V, Esteki R, Prudente Z, Soliera AR, Cattelani S, Manzotti G, Grisendi G, Dominici M, Pieraccioli M, Raschellà G, Chiodoni C, Colombo MP, Calabretta B. Inhibiting interactions of lysine demethylase LSD1 with snail/slug blocks cancer cell invasion. Can Res. 2013;73:235–45.

    CAS  Google Scholar 

  126. Wang M, Liu X, Guo J, Weng X, Jiang G, Wang Z, He L. Inhibition of LSD1 by Pargyline inhibited process of EMT and delayed progression of prostate cancer in vivo. Biochem Biophys Res Commun. 2015;467:310–5.

    CAS  PubMed  Google Scholar 

  127. Pantelaiou-Prokaki G, Mieczkowska I, Schmidt GE, Fritzsche S, Prokakis E, Gallwas J, Wegwitz F. HDAC8 suppresses the epithelial phenotype and promotes EMT in chemotherapy-treated basal-like breast cancer. Clin Epigenet. 2022;14:7.

    CAS  Google Scholar 

  128. Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 2016;6.

  129. Ji M, Lee EJ, Kim KB, Kim Y, Sung R, Lee S-J, Kim DS, Park SM. HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells. Oncol Rep. 2015;33:2299–308.

    CAS  PubMed  Google Scholar 

  130. Duan Y-C, Ma Y-C, Qin W-P, Ding L-N, Zheng Y-C, Zhu Y-L, Zhai X-Y, Yang J, Ma C-Y, Guan Y-Y. Design and synthesis of tranylcypromine derivatives as novel LSD1/HDACs dual inhibitors for cancer treatment. Eur J Med Chem. 2017;140:392–402.

    CAS  PubMed  Google Scholar 

  131. Xu Y, Guo B, Liu X, Tao K. miR-34a inhibits melanoma growth by targeting ZEB1. Aging (Albany NY). 2021;13:15538–47.

    CAS  PubMed  Google Scholar 

  132. Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, Araujo L, Carbone DP, Shilo K, Giri DK, Kelnar K, Martin D, Komaki R, Gomez DR, Krishnan S, Calin GA, Bader AG, Welsh JW. PDL1 regulation by p53 via miR-34. JNCI J Natl Cancer Inst. 2015;108:djv303.

    PubMed  Google Scholar 

  133. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu C-C, LeBleu VS, Kalluri R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Salt MB, Bandyopadhyay S, McCormick F. Epithelial-to-mesenchymal transition rewires the molecular path to PI3K-dependent proliferation. Cancer Discov. 2014;4:186–99.

    CAS  PubMed  Google Scholar 

  135. Pasquier J, Abu-Kaoud N, Al Thani H, Rafii A. Epithelial to mesenchymal transition in a clinical perspective. J Oncol. 2015; 792182.

  136. Pattabiraman DR, Bierie B, Kober KI, Thiru P, Krall JA, Zill C, Reinhardt F, Tam WL, Weinberg RA. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680.

    PubMed  PubMed Central  Google Scholar 

  137. Verma A, Mathur R, Farooque A, Kaul V, Gupta S, Dwarakanath BS. T-Regulatory cells in tumor progression and therapy. Cancer Manag Res. 2019;11:10731–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang Y, Li C, Liu T, Dai X, Bazhin AV. Myeloid-derived suppressor cells in tumors: from mechanisms to antigen specificity and microenvironmental regulation. Front Immunol. 2020;11:1371.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. De Cicco P, Ercolano G, Ianaro A. The new era of cancer immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 2020;11:550783.

    Google Scholar 

  140. Gu Y, Zhang Z, ten Dijke P. Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol Immunol. 2023;20:318–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther. 2021;6:72.

    PubMed  PubMed Central  Google Scholar 

  142. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30.

    CAS  PubMed  Google Scholar 

  143. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27:109–18.

    CAS  PubMed  Google Scholar 

  144. Yumimoto K, Sugiyama S, Mimori K, Nakayama KI. Potentials of C-C motif chemokine 2-C–C chemokine receptor type 2 blockers including propagermanium as anticancer agents. Cancer Sci. 2019;110:2090–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014;6:a021857.

    PubMed  PubMed Central  Google Scholar 

  146. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massagué J. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150:165–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lüönd F, Sugiyama N, Bill R, Bornes L, Hager C, Tang F, Santacroce N, Beisel C, Ivanek R, Bürglin T, Tiede S, van Rheenen J, Christofori G. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev Cell. 2021;56:3203-3221.e3211.

    PubMed  Google Scholar 

  148. Brown MS, Abdollahi B, Wilkins OM, Lu H, Chakraborty P, Ognjenovic NB, Muller KE, Jolly MK, Christensen BC, Hassanpour S, Pattabiraman DR. Phenotypic heterogeneity driven by plasticity of the intermediate EMT state governs disease progression and metastasis in breast cancer. Sci Adv. 2022;8:eabj8002.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ran X, Xiao J, Zhang Y, Teng H, Cheng F, Chen H, Zhang K, Sun Z. Low intratumor heterogeneity correlates with increased response to PD-1 blockade in renal cell carcinoma. Therap Adv Med Oncol. 2020;12:1758835920977117.

    CAS  Google Scholar 

  150. Nguyen PHD, Ma S, Phua CZJ, Kaya NA, Lai HLH, Lim CJ, Lim JQ, Wasser M, Lai L, Tam WL, Lim TKH, Wan WK, Loh T, Leow WQ, Pang YH, Chan CY, Lee SY, Cheow PC, Toh HC, Ginhoux F, Iyer S, Kow AWC, Young Dan Y, Chung A, Bonney GK, Goh BKP, Albani S, Chow PKH, Zhai W, Chew V. Intratumoural immune heterogeneity as a hallmark of tumor evolution and progression in hepatocellular carcinoma. Nat Commun. 2021;12:227.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K, Henry JY, Ghorani E, Wilson GA, Birkbak NJ, Jamal-Hanjani M, Veeriah S, Szallasi Z, Loi S, Hellmann MD, Feber A, Chain B, Herrero J, Quezada SA, Demeulemeester J, Van Loo P, Beck S, McGranahan N, Swanton C, Swanton C, Jamal-Hanjani M, Veeriah S, Czyzewska-Khan J, Johnson D, Laycock J, Rosenthal R, Gorman P, Hynds RE, Wilson G, Birkbak NJ, Watkins TBK, McGranahan N, Escudero M, Stewart A, Van Loo P, Rowan A, Hiley C, Abbosh C, Goldman J, Stone RK, Denner T, Ward S, Nye E, Joshi K, Ben Aissa A, Wong YNS, Georgiou A, Quezada S, Hartley JA, Lowe HL, Herrero J, Lawrence D, Hayward M, Panagiotopoulos N, Falzon M, Borg E, Marafioti T, Janes SM, Forster M, Ahmad T, Lee SM, Papadatos-Pastos D, Carnell D, Mendes R, George J, Ahmed A, Taylor M, Choudhary J, Summers Y, Califano R, Taylor P, Shah R, Krysiak P, Rammohan K, Fontaine E, Booton R, Evison M, Crosbie P, Moss S, Joseph L, Bishop P, Quinn AM, Doran H, Leek A, Harrison P, Moore K, Waddington R, Novasio J, Blackhall F, Rogan J, Smith E, Dive C, Tugwood J, Brady G, Rothwell DG, Pierce J, Gulati S, Naidu B, Langman G, Trotter S, Bancroft H, Kerr A, Kadiri S, Middleton G, Djearaman M, Fennell D, Shaw JA, Le Quesne J, Moore DA, Nakas A, Rathinam S, Monteiro W, Marshall H, Nelson L, Riley J, Primrose L, Martinson L, Anand G, Khan S, Nicolson M, Kerr K, Palmer S, Remmen H, Miller J, Buchan K, Chetty M, Gomersall L, Lester J, Morgan F, Adams H, Davies H, Kornaszewska M, Attanoos R, Lock S, MacKenzie M, Wilcox M, Bell H, Hackshaw A, Ngai Y, Smith S, Gower N, Ottensmeier C, Chee S, Johnson B, Alzetani A, Shaw E, Lim E, De Sousa P, Barbosa MT, Bowman A, Jordan S, Rice A, Raubenheimer H, Bhayani H, Hamilton M, Mensah N, Ambrose L, Devaraj A, Chavan H, Nicholson AG, Lau K, Sheaff M, Schmid P, Conibear J, Ezhil V, Prakash V, Russell P, Light T, Horey T, Danson S, Bury J, Edwards J, Hill J, Matthews S, Kitsanta Y, Suvarna K, Fisher P, Shackcloth M, Gosney J, Feeney S, Asante-Siaw J, Ryanna K, Dawson A, Tuffail M, Bajaj A, Brozik J, Walter H, Carey N, Price G, Gilbert K, Webb J, Patel A, Chaturvedi A, Granato F, Baker K, Carter M, Priest L, Krebs MG, Lindsay C, Gomes F, Chemie F, George R, Patrini D, Khiroya R, Shaw P, Skrzypski M, Sunderland MW, Reading JL, Beastall C, Mangal N, Peggs K, Lim E, Al-Bakir M, Navani N, Scarci M, Ensell L, Biswas D, Salgado R, Razaq M, Nicod J, Beck S, Lopez S, Huebner A, Dietzen M, Mourikis T, Adefila-Ideozu T, Begum S, Klein H, Mani A, Carvalho S, Kaniu D, Realingo C, Malima M, Booth S, Lim L, Rao J, Tenconi S, Socci L, Kibutu F, Agyemang M, Young R, Blyth KG, Dick C, Kirk A, Kidd A. The, Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567:479–85.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All figures were created with Biorender.com.

Funding

This research did not receive any specific support or funding.

Author information

Authors and Affiliations

Authors

Contributions

SIO conceived the project and designed the figures. SOI and KAA wrote and edited the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Sikiru O. Imodoye.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imodoye, S.O., Adedokun, K.A. EMT-induced immune evasion: connecting the dots from mechanisms to therapy. Clin Exp Med 23, 4265–4287 (2023). https://doi.org/10.1007/s10238-023-01229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01229-4

Keywords

Navigation