Skip to main content

Advertisement

Log in

A meta-analysis of circulating tumor DNA as a survival indicator in small cell lung cancer patients

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

A high level of circulating tumor DNA (ctDNA) has been linked to poor survival in patients with certain solid tumors. In spite of this, it is still unclear whether ctDNA is associated with poor survival in small cell lung cancer (SCLC). To investigate the above association, we conducted a systematic review and meta-analysis. PubMed, Web of Science, Cochrane’s Library, and Embase were searched for relevant cohort studies from the inception of the databases to November 28, 2022. Data collection, literature search, and statistical analysis were carried out independently by two authors. To account for heterogeneity, we used a random-effects model. In this meta-analysis, 391 patients with SCLC were identified, and the data were pooled from nine observational studies and followed for 11.4 to 25.0 months. A high ctDNA was associated with worse overall survival (OS, risk ratio [RR] 2.50, 95% confidence interval [CI]1.85 to 3.38, p < 0.001; I2 = 25%) and progression-free survival (PFS, RR 2.33, 95% CI 1.48 to 3.64, p < 0.001, I2 = 42%). Subgroup analyses retrieved consistent results in prospective and retrospective studies, in studies with ctDNA measured with polymerase chain reaction or next-generation sequencing, and in studies analyzed with univariate or multivariate regression models. Studies suggest that ctDNA may be an important factor in predicting poor OS and PFS in SCLC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author.

Abbreviations

SCLC:

Small cell lung cancer

NSCLC:

Non-small cell lung cancer

ctDNA:

Circulating tumor DNA

OS:

Overall survival

PFS:

Progression-free survival

NOS:

Newcastle–Ottawa Scale

RRs:

Risk ratios

Cis:

Confidence intervals

SEs:

Standard errors

PCR:

Polymerase chain reaction

NGS:

Next-generation sequencing

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Wood DE, Kazerooni EA, Aberle D, et al. NCCN guidelines(R) insights: lung cancer screening, version 1.2022. J Natl Compr Canc Netw. 2022;20:754–64.

    Article  PubMed  Google Scholar 

  3. Ganti AKP, Loo BW, Bassetti M, et al. Small cell lung cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19:1441–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zugazagoitia J, Paz-Ares L. Extensive-stage small-cell lung cancer: first-line and second-line treatment options. J Clin Oncol. 2022;40:671–80.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Zou S, Zhao Z, Liu P, Ke C, Xu S. New insights into small-cell lung cancer development and therapy. Cell Biol Int. 2020;44:1564–76.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sanchez-Herrero E, Serna-Blasco R, Robado de Lope L, Gonzalez-Rumayor V, Romero A, Provencio M. Circulating tumor DNA as a cancer biomarker: an overview of biological features and factors that may impact on ctDNA analysis. Front Oncol. 2022;12:943253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stadler JC, Belloum Y, Deitert B, et al. Current and future clinical applications of ctDNA in immuno-oncology. Cancer Res. 2022;82:349–58.

    Article  CAS  PubMed  Google Scholar 

  8. Pessoa LS, Heringer M, Ferrer VP. ctDNA as a cancer biomarker: a broad overview. Crit Rev Oncol Hematol. 2020;155:103109.

    Article  PubMed  Google Scholar 

  9. Guo RQ, Peng JZ, Sun J, Li YM. Clinical significance of circulating tumor DNA in localized non-small cell lung cancer: a systematic review and meta-analysis. Clin Exp Med. 2022;31:1–1.

    Google Scholar 

  10. Mi J, Han X, Wang R, Ma R, Zhao D. Circulation tumour DNA in predicting recurrence and prognosis in operable colorectal cancer patients: a meta-analysis. Eur J Clin Invest. 2022;52:e13842.

    Article  CAS  PubMed  Google Scholar 

  11. Liu H, Yang H, Chen X. Prognostic value of circulating tumour DNA in asian patients with hepatocellular carcinoma: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2022;2022:8019652.

    PubMed  PubMed Central  Google Scholar 

  12. Bunduc S, Gede N, Vancsa S, et al. Prognostic role of cell-free DNA biomarkers in pancreatic adenocarcinoma: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2022;169:103548.

    Article  PubMed  Google Scholar 

  13. Lu Y, Li L. The prognostic value of circulating tumor DNA in ovarian cancer: a meta-analysis. Technol Cancer Res Treat. 2021;20:15330338211043784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pizzutilo EG, Pedrani M, Amatu A, et al. Liquid biopsy for small cell lung cancer either de novo or transformed: systematic review of different applications and meta-analysis. Cancers. 2021;13:2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mondelo-Macia P, Garcia-Gonzalez J, Leon-Mateos L, et al. Current status and future perspectives of liquid biopsy in small cell lung cancer. Biomedicines. 2021;9:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Higgins J, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions version 6.2. The Cochrane Collaboration. 2021;www.training.cochrane.org/handbook.

  19. Wells GA, Shea B, O’Connell D, et al. The newcastle-ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2010;http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

  20. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  21. Patsopoulos NA, Evangelou E, Ioannidis JP. Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol. 2008;37:1148–57.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez R, Silva JM, Sanchez A, et al. Microsatellite alterations and TP53 mutations in plasma DNA of small-cell lung cancer patients: follow-up study and prognostic significance. Ann Oncol. 2000;11:1097–104.

    Article  CAS  PubMed  Google Scholar 

  24. Almodovar K, Iams WT, Meador CB, et al. Longitudinal cell-free DNA analysis in patients with small cell lung cancer reveals dynamic insights into treatment efficacy and disease relapse. J Thorac Oncol. 2018;13:112–23.

    Article  CAS  PubMed  Google Scholar 

  25. Du M, Thompson J, Fisher H, Zhang P, Huang CC, Wang L. Genomic alterations of plasma cell-free DNAs in small cell lung cancer and their clinical relevance. Lung Cancer. 2018;120:113–21.

    Article  PubMed  Google Scholar 

  26. Nong J, Gong Y, Guan Y, et al. Circulating tumor DNA analysis depicts subclonal architecture and genomic evolution of small cell lung cancer. Nat Commun. 2018;9:3114.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Herbreteau G, Langlais A, Greillier L, et al. Circulating tumor DNA as a prognostic determinant in small cell lung cancer patients receiving Atezolizumab. J Clin Med. 2020;9:3861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iams WT, Kopparapu PR, Yan Y, et al. Blood-based surveillance monitoring of circulating tumor DNA from patients with SCLC detects disease relapse and predicts death in patients with limited-stage disease. JTO Clin Res Rep. 2020;1:100024.

    PubMed  PubMed Central  Google Scholar 

  29. Jin Y, Chen YM, Hu X, et al. [Analysis of the feasibility and prognostic value of circulating tumor DNA in detecting gene mutations in small cell lung cancer]. Zhonghua Yi Xue Za Zhi. 2020;100:3614–21.

    CAS  PubMed  Google Scholar 

  30. Mohan S, Foy V, Ayub M, et al. Profiling of circulating free DNA using targeted and genome-wide sequencing in patients with SCLC. J Thorac Oncol. 2020;15:216–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mondelo-Macia P, Garcia-Gonzalez J, Abalo A, et al. Plasma cell-free DNA and circulating tumor cells as prognostic biomarkers in small cell lung cancer patients. Transl Lung Cancer Res. 2022;11:1995–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernandez-Cuesta L, Perdomo S, Avogbe PH, et al. Identification of circulating tumor DNA for the early detection of small-cell lung cancer. EBioMedicine. 2016;10:117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thomas A, Vilimas R, Trindade C, et al. Durvalumab in combination with olaparib in patients with relapsed SCLC: results from a phase II study. J Thorac Oncol. 2019;14:1447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carter L, Rothwell DG, Mesquita B, et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat Med. 2017;23:114–9.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Tian C, Lv F, et al. Molecular analysis of cell-free DNA identifies distinct molecular features in patients with chemosensitive and chemorefractory small cell lung cancer. Cancer Commun. 2019;39:20.

    Article  Google Scholar 

  36. Gilson P. Enrichment and analysis of ctDNA. Recent Results Cancer Res. 2020;215:181–211.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JL contributed to conceptualization; data curation; formal analysis; and writing-original draft. LW contributed to data curation and formal analysis. ZD contributed to validation; visualization; writing-original draft. QS contributed to data curation and formal analysis. ZW contributed to methodology; supervision; and writing-review and editing. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhanbo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Institutional Review Board approval was not required because this is a meta-analysis.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10238_2023_1052_MOESM1_ESM.pdf

Fig. S1 Sensitivity analysis for the association between ctDNA and PFS of SCLC limited to studies with ctDNA measured with NGS (PDF 152 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, L., Dong, Z. et al. A meta-analysis of circulating tumor DNA as a survival indicator in small cell lung cancer patients. Clin Exp Med 23, 3935–3945 (2023). https://doi.org/10.1007/s10238-023-01052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01052-x

Keywords

Navigation