Skip to main content
Log in

Visualization in virtual reality: a systematic review

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Rapidly growing virtual reality (VR) technologies and techniques have gained importance over the past few years, and academics and practitioners have been searching for efficient visualizations in VR. To date, the emphasis has been on the employment of game technologies. Despite the growing interest and potential, visualization studies have lacked a common baseline in the transition period of 2D visualizations to immersive ones. To this end, the presented study aims to provide a systematic literature review that explains the state-of-the-art research and future trends in visualization in virtual reality. The research framework is grounded in empirical and theoretical works of visualization. We characterize the reviewed literature based on three dimensions: (a) Connection with visualization background and theory, (b) Evaluation and design considerations for virtual reality visualization, and (c) Empirical studies. The results from this systematic review suggest that: (1) There are only a few studies that focus on creating standard guidelines for virtual reality, and each study individually provides a framework or employs previous studies on traditional 2D visualizations; (2) With the myriad of advantages provided for visualization and virtual reality, most of the studies prefer to use game engines; (3) Although game engines are extensively used, they are not convenient for critical scientific studies; and (4) 3D versions of traditional statistical visualization techniques, such as bar plots and scatter plots, are still commonly used in the data visualization context. This systematic review attempts to add a clear picture of the emerging contexts, different elements, and interdependencies to the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aamir A, Tamosiunaite M, Wörgötter F (2022) Caffe2Unity: immersive visualization and interpretation of deep neural networks. Electronics 11(1):83. https://doi.org/10.3390/electronics11010083

    Article  Google Scholar 

  • Akin S, Ergun O, Surer E, Dino IG (2020) An immersive performative architectural design tool with daylighting simulations: a building information modeling-based approach. Engineering, Construction and Architectural Management

  • Akpan IJ, Shanker M (2019) A comparative evaluation of the effectiveness of virtual reality, 3D visualization and 2D visual interactive simulation: an exploratory meta-analysis. SIMULATION 95(2):145–170

    Google Scholar 

  • Amores J, Benavides X, Maes P (2015) Showme: a remote collaboration system that supports immersive gestural communication. In: proceedings of the 33rd annual ACM conference extended abstracts on human factors in computing systems pp 1343–1348

  • Aparicio, M., & Costa, C. J. (2015). Data visualization. Communication design quarterly review, 3(1), 7-11.

    Google Scholar 

  • Ardulov V, Pariser O (2017) Immersive data interaction for planetary and earth sciences. In: 2017 IEEE virtual reality (VR) pp 263–264 IEEE

  • Asjad NS, Adams H, Paris R, Bodenheimer B (2018) Perception of height in virtual reality: a study of climbing stairs. In: proceedings of the 15th acm symposium on applied perception pp 1–8

  • Bailey BJ, Lilja A, Strong C, Moline K, Kavallaris M, Hughes RT, McGhee J (2019) Multi-user immersive virtual reality prototype for collaborative visualization of microscopy image data. In: the 17th international conference on virtual-reality continuum and its applications in industry pp 1–2

  • Bender J, Müller M, Macklin M (2015) Position-based simulation methods in computer graphics. In: Eurographics (tutorials) p 8

  • Bergmann T, Balzer MN, Hopp T, van de Kamp T, Kopmann A, Jerome NT, Zapf M (2017) Inspiration from VR gaming technology: deep immersion and realistic interaction for scientific visualization. In: VISIGRAPP (3: IVAPP), pp 330–334

  • Bertin J (1983) Semiology of graphics. University of Wisconsin press

  • Blinn JF (1982) A generalization of algebraic surface drawing. ACM Trans Gr (TOG) 1(3):235–256

    Google Scholar 

  • Bobek S, Tadeja SK, Struski Ł, Stachura P, Kipouros T, Tabor J, Kristensson PO (2022) Virtual reality-based parallel coordinates plots enhanced with explainable ai and data-science analytics for decision-making processes. Appl Sci 12(1):331

    Google Scholar 

  • Bonali FL, Russo E, Vitello F, Antoniou V, Marchese F, Fallati L, Bracchi V, Corti N, Savini A, Whitworth M, Drymoni K, Mariotto FP, Nomikou P, Sciacca E, Bressan S, Falsaperla S, Reitano D, van Wyk de Vries B, Krokos M, Panieri G, Stiller-Reeve MA, Vizzari G, Becciani U, Tibaldi A (2022) How Academics and the Public Experienced Immersive Virtual Reality for Geo-Education. Geosciences, 12(1):9. https://doi.org/10.3390/geosciences12010009

  • Bostock M, Ogievetsky V, Heer J (2011) D3 data-driven documents. IEEE Trans Visual Comput Gr 17(12):2301–2309

    Google Scholar 

  • Brehmer M, Munzner T (2013) A multi-level typology of abstract visualization tasks. IEEE Trans Visual Comput Gr 19(12):2376–2385

    Google Scholar 

  • Broucke SV, Deligiannis N (2019) Visualization of real-time heterogeneous smart city data using virtual reality. In: 2019 IEEE international smart cities conference (ISC2) pp 685–690. IEEE

  • Brunhart-Lupo N, Bush B, Gruchalla K, Potter K, Smith S (2020) Collaborative exploration of scientific datasets using immersive and statistical visualization (No. NREL/CP-2C00–76783). National renewable energy lab. (NREL), Golden, CO (United States)

  • Butcher PW, Ritsos PD, John NW (2019) VriA-A framework for immersive analytics on the web. In: conference on human factors in computing systems proceedings, p 2–7

  • Caldarola EG, Rinaldi AM (2017) Big data visualization tools: a survey. Research Gate

  • Caserman P, Garcia-Agundez A, Gobel S (2019) A survey of full-body motion reconstruction in immersive virtual reality applications. IEEE Trans Visual Comput Graphics 26(10):3089–3108

    Google Scholar 

  • Cassidy KC, Sefcık J, Raghav Y, Chang A, Durrantˇ JD (2020) ProteinVR: web-based molecular visualization in virtual reality. PLoS Comput Biol 16(3):1–17

    Google Scholar 

  • Chandler T, Cordeil M, Czauderna T, Dwyer T, Glowacki J, Goncu C, Wilson E (2015) Immersive Analytics. In: 2015 Big data visual analytics (BDVA), Vol. 1. Institute of electrical and electronics engineers (IEEE), Hobart, TAS, USA, 1–8

  • Chang TP, Weiner D (2016) Screen-based simulation and virtual reality for pediatric emergency medicine. Clin Pediatr Emerg Med 17(3):224–230

    Google Scholar 

  • Chawla P, Hazarika S, Shen HW (2020) Token-wise sentiment decomposition for ConvNet: visualizing a sentiment classifier. Vis Inform 4(2):132–141

    Google Scholar 

  • Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The cave: audio visual experience automatic virtual environment. Commun ACM 35(6):64–73

    Google Scholar 

  • Curtis V (2015) Motivation to participate in an online citizen science game: a study of foldit. Sci Commun 37(6):723–746

    Google Scholar 

  • Dede C (2009) Immersive interfaces for engagement and learning. Science 323(5910):66–69

    Google Scholar 

  • Deterding S, Dixon D, Khaled R, Nacke L (2011) From game design elements to gamefulness: Defining “gamification”. In: proceedings of the 15th international academic MindTrek conference: Envisioning future media environments. pp 9–15

  • Dong H, Liang X, Liu Y, Wang D (2022) 5G virtual reality in the design and dissemination of contemporary urban image system under the background of big data. Wireless Communications and Mobile Computing

  • Drogemuller A, Cunningham A, Walsh J, Ross W, Thomas BH (2017) VRige: exploring social network interactions in immersive virtual environments. In: Big data visual and immersive analytics.

  • Drouhard M, Steed CA, Hahn S, Proffen T, Daniel J, Matheson M (2015) Immersive visualization for materials science data analysis using the Oculus Rift. In: 2015 IEEE international conference on big data (Big Data) pp 2453–2461 IEEE

  • Du F, Plaisant C, Spring N, Shneiderman B (2016) Eventaction: visual analytics for temporal event sequence recommendation. In: 2016 IEEE conference on visual analytics science and technology (VAST) pp 61–70

  • Du R, Li D, Varshney A (2019) Geollery: a mixed reality social media platform. In: proceedings of the 2019 CHI conference on human factors in computing systems pp 1–13

  • Dwyer T, Marriott K, Isenberg T, Klein K, Riche N, Schreiber F, Thomas BH (2018) Immersive analytics: an introduction. In: immersive analytics pp. 1–23 Springer, Cham

  • El Jamiy F, Marsh R (2018) Survey on depth perception in head mounted displays: distance estimation in virtual reality, augmented reality, and mixed reality. IET Image Proc 13(5):707–712

    Google Scholar 

  • Elden M (2017) Implementation and initial assessment of VR for scientific visualisation: extending unreal engine 4 to visualise scientific data on the HTC Vive. MSc Thesis, 108

  • Ens B, Cordeil M, North C, Dwyer T, Besançon L, Prouzeau A, Liu J, Cunningham A, Drogemuller A, Satriadi KA, et al (2022) Immersive analytics 2.0: Spatial and embodied sensemaking. In CHI Conference on Human Factors in Computing Systems Extended Abstracts pp 1–7

  • Escobar-Castillejos D, Noguez J, Neri L, Magana A, Benes B (2016) A review of simulators with haptic devices for medical training. J Med Syst 40(4):1–22

    Google Scholar 

  • Ferdani D, Demetrescu E, Cavalieri M, Pace G, Lenzi S (2020) 3D modelling and visualization in field archaeology: from survey to interpretation of the past using digital technologies. Groma Documenting archaeology

  • Fernandez-Palacios BJ, Morabito D, Remondino F (2017) Access to complex reality-based 3D models using virtual reality solutions. J Cult Herit 23:40–48

    Google Scholar 

  • Ferrell JB, Campbell JP, McCarthy DR, McKay KT, Hensinger M, Srinivasan R, Zhao X, Wurthmann A, Li J, Schneebeli ST (2019) Chemical exploration with virtual reality in organic teaching laboratories. J Chem Educ 96(9):1961–1966

    Google Scholar 

  • Fittkau F, Krause A, Hasselbring W (2015) Exploring software cities in virtual reality. 2015 IEEE 3rd working conference on software visualization, VISSOFT 2015-Proceedings, 130–134

  • Fonnet A, Prie Y (2021) Survey of immersive analytics. IEEE Trans vis Comput Gr 27(3):2101–2122

    Google Scholar 

  • Freina L, Ott M (2015) A literature review on immersive virtual reality in education: state of the art and perspectives. In: the international scientific conference elearning and software for education, vol 1, pp 10–1007

  • Friendly M (2007) A-M Guerry's. Moral Statistics of France: challenges for multivariable spatial analysis. Stat Sci, pp 368–399

  • Friendly M, Sigal M, Harnanansingh D (2017) The milestones project: A database for the history of data visualization. In Visible Numbers: Essays on the History of Statistical Graphics pp 219–234 Routledge

  • Fussell SR, Setlock LD (2014) Computer-mediated communication. In: Handbook of language and social psychology pp 471–490. Oxford University Press

  • Gal R, Shapira L, Ofek E, Kohli P (2014) Flare: fast layout for augmented reality applications. In: 2014 IEEE international symposium on mixed and augmented reality (ISMAR). pp 207–212. IEEE

  • Gamberini L, Chittaro L, Spagnolli A, Carlesso C (2015) Psychological response to an emergency in virtual reality: effects of victim ethnicity and emergency type on helping behavior and navigation. Comput Hum Behav 48:104–113

    Google Scholar 

  • Gettens RJ (1964) Science and archeology: archaeology and the microscope. The scientific examination of archaeological evidence. Leo Biek. Lutterworth, London, 1963. 287 pp Illus. 45s. Science, 143(3601): 36–36

  • Gibson JJ (1977) The concept of affordances. Perceiving, acting, and knowing

  • Goncalves G, Bessa M, Melo M, Coelho H, Monteiro P E (2021) Hands-free interaction in immersive virtual reality: a systematic review

  • Grabowski A, Jankowski J (2015) Virtual reality-based pilot training for underground coal miners. Saf Sci 72:310–314

    Google Scholar 

  • Gradl S, Wirth M, Zillig T, Eskofier BM (2018) Visualization of heart activity in virtual reality: a biofeedback application using wearable sensors. In: 2018 IEEE 15th international conference on wearable and implantable body sensor networks (BSN) pp 152–155. IEEE

  • Gugenheimer J, Stemasov E, Frommel J, Rukzio E (2017a) ShareVR: enabling co-located experiences for virtual reality between HMD and non-HMD users. In: conference on human factors in computing systems proceedings Vol 2017a, pp 4021–4033

  • Gugenheimer J, Stemasov E, Frommel J, Rukzio E (2017b) ShareVR: Enabling co-located experiences for virtual reality between HMD and Non-HMD users. In: proceedings of the 2017b CHI conference on human factors in computing systems pp 4021–4033

  • Guo R, Fujiwara T, Li Y, Lima KM, Sen S, Tran NK, Ma KL (2020) Comparative visual analytics for assessing medical records with sequence embedding. Vis Informa 4(2):72–85

    Google Scholar 

  • Hadjar H, Meziane A, Gherbi R, Setitra I, Aouaa N (2018) WebVR based interactive visualization of open health data. In: ACM international conference proceeding series pp 56–63

  • Hanwell MD, Martin KM, Chaudhary A, Avila LS (2015) The visualization toolkit (vtk): rewriting the rendering code for modern graphics cards. SoftwareX 1:9–12

    Google Scholar 

  • He Z, Du R, Perlin K (2020) Collabovr: a reconfigurable framework for creative collaboration in virtual reality. In: 2020 IEEE international symposium on mixed and augmented reality (ISMAR) pp 542–554 IEEE

  • Heer J (2009) Protovis: a graphical toolkit for visualization. IEEE Trans Visual Comput Gr 15(6):1121–1128

    Google Scholar 

  • Heer J, Card SK, Landay JA (2005) Prefuse: a toolkit for interactive information visualization. In: proceedings of the SIGCHI conference on human factors in computing systems pp 421–430

  • Helbig C, Bauer HS, Rink K, Wulfmeyer V, Frank M, Kolditz O (2014) Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches. Environ Earth Sci 72(10):3767–3780

    Google Scholar 

  • Hirota K, Tagawa K (2016) Interaction with virtual object using deformable hand. IEEE Virtual Real (VR) 2016:49–56

    Google Scholar 

  • Hoppe AH, van de Camp F, Stiefelhagen R (2021) Shisha: enabling shared perspective with face-to-face collaboration using redirected avatars in virtual reality. Proc ACM Hum-Comput Interact 4(CSCW3):1–22

    Google Scholar 

  • Horton BK, Kalia RK, Moen E, Nakano A, Nomura K, Qian M, Vashishta P, Hafreager A (2019) Game-engine-assisted research platform for scientific computing (GEARS) in virtual reality. SoftwareX 9:112–116

    Google Scholar 

  • Huang J, Lucash MS, Scheller RM, Klippel A (2019) Visualizing ecological data in virtual reality. 26th IEEE conference on virtual reality and 3D user interfaces, VR 2019 proceedings, 1311–1312

  • Huang Y, Zhai X, Ali S, Liu R (2016) Design and implementation of traditional Chinese medicine education visualization platform based on virtual reality technology. In: 2016 8th international conference on information technology in medicine and education (ITME) pp 499–502 IEEE

  • Hubenschmid S, Wieland J, Fink DI, Batch A, Za Germann J, Elmqvist N, Reiterer H (2022) Relive: bridging in-situ and ex-situ visual analytics for analyzing mixed reality user studies. In: CHI conference on human factors in computing systems pp 1–20

  • Hurter C, Riche NH, Drucker SM, Cordeil M, Alligier R, Vuillemot R (2018) Fiberclay: sculpting three dimensional trajectories to reveal structural insights. IEEE Trans Visual Comput Gr 25(1):704–714

    Google Scholar 

  • Hvass J, Larsen O, Vendelbo K, Nilsson N, Nordahl R, Serafin, S (2018) Visual realism and presence in a virtual reality game. In 3DTV-Conference 2017 pp 1–4

  • Ibayashi H, Sugiura Y, Sakamoto D, Miyata N, Tada M, Okuma T, Kurata T, Mochimaru, M, Igarashi T (2015) Dollhouse vr: a multi-view, multi-user collaborative design workspace with vr technology. In: SIGGRAPH Asia 2015 emerging technologies pp 1–2

  • Ivson P, Moreira A, Queiroz F, Santos W, Celes W (2020) A systematic review of visualization in building information modeling. IEEE Trans vis Comput Gr 26(10):3109–3127

    Google Scholar 

  • Jacovi A, Shalom OS, Goldberg Y (2018) Understanding convolutional neural networks for text classification. arXiv preprintarXiv:1809.08037

  • Jamroz D (2009) Multidimensional labyrinth–multidimensional virtual reality. In: man-machine interactions pp 445–450 Springer

  • Jamroz D (2018) Application of perspective-based observational tunnels method to visualization of multidimensional fractals. In: international conference on artificial intelligence and soft computing pp 364–375 Springer

  • Jamroz D (2020) Multidimensional virtual reality-mvr method: a new method of visualization of multidimensional worlds. Vis Comput 36(4):733–742

    Google Scholar 

  • Jeelani I, Han K, Albert A (2020a) Development of virtual reality and stereo-panoramic environments for construction safety training. Engineering, construction and architectural management

  • Jeelani I, Han K, Albert A (2020b) Development of virtual reality and stereo-panoramic environments for construction safety training. Eng Constr Archit Manag 27(8):1853–1876

    Google Scholar 

  • Jin Z, Cui S, Guo S, Gotz D, Sun J, Cao N (2020) Carepre: an intelligent clinical decision assistance system. ACM Trans Comput Healthc 1(1):1–20

    Google Scholar 

  • Joo SY, Cho YS, Lee SY, Seok H, Seo CH (2020) Effects of virtual reality-based rehabilitation on burned hands: a prospective, randomized, singleblind study. J Clin Med 9(3):731

    Google Scholar 

  • Juanes JA, Ruisoto P, Briz-Ponce L (2016) Immersive visualization anatomical environment using virtual reality devices. In: proceedings of the fourth international conference on technological ecosystems for enhancing multiculturality pp 473–477

  • Keim DA, Mansmann F, Schneidewind J, Thomas J, Ziegler H (2008) Visual analytics: scope and challenges. In: visual data mining pp 76–90 Springer

  • Keiriz JJ, Zhan L, Ajilore O, Leow AD, Forbes AG (2018) Neurocave: a web-based immersive visualization platform for exploring connectome datasets. Netw Neurosci 2(3):344–361

    Google Scholar 

  • Kersten TP, Tschirschwitz F, Deggim S (2017) Development of a virtual museum including a 4D presentation of building history in virtual reality. International archives of the photogrammetry, remote sensing and spatial information sciences ISPRS archives, 42(2W3): 361–367

  • Kitchenham B, Charters S (2007). Guidelines for performing systematic literature reviews in software engineering

  • Kokelj, Z., Bohak, C., & Marolt, M (2018) A web-based virtual reality environment for medical visualization. In: 2018 41st international convention on information and communication technology, Electronics and microelectronics, MIPRO 2018-Proceedings pp 299–302

  • Kraus M, Angerbauer K, Buchmüller J, Schweitzer D, Keim, DA, Sedlmair M, Fuchs J (2020) Assessing 2D and 3D heatmaps for comparative analysis: an empirical study. In: conference on human factors in computing systems-Proceedings pp 1–14

  • Kriglstein S (2019) A taxonomy of visualizations for gameplay data. In: data analytics applications in gaming and entertainment pp 223

  • Krokos E, Rowden A, Whitley K, Varshney A (2018) Visual analytics for root dns data. In: 2018 IEEE symposium on visualization for cyber security (VizSec) pp 1–8 IEEE Computer Society

  • Kwok PK, Yan M, Chan BK, Lau HY (2019) Crisis management training using discrete-event simulation and virtual reality techniques. Comput Ind Eng 135:711–722

    Google Scholar 

  • Kwon BC, Choi MJ, Kim JT, Choi E, Kim YB, Kwon S, Sun J, Choo J (2018) Retainvis: visual analytics with interpretable and interactive recurrent neural networks on electronic medical records. IEEE Trans vis Comput Gr 25(1):299–309

    Google Scholar 

  • Kwon OH, Muelder C, Lee K, Ma KL (2015) Spherical layout and rendering methods for immersive graph visualization. In: IEEE pacific visualization symposium 2015 pp 63–67

  • Lee H, Kim H, Monteiro DV, Goh Y, Han D, Liang HN, Yang HS, Jung J (2019) Annotation vs. virtual tutor: comparative analysis on the effectiveness of visual instructions in immersive virtual reality. In: proceedings-2019 IEEE international symposium on mixed and augmented reality, ISMAR 2019 pp 318–327

  • Li D, Lee E, Schwelling E, Quick MG, Meyers P, Du R, Varshney A (2020) Meteovis: visualizing meteorological events in virtual reality. In: extended abstracts of the 2020 CHI conference on human factors in computing systems pp 1–9

  • Li D, Mei H, Shen Y, Su S, Zhang W, Wang J, Zu M, Chen W (2018a) Echarts: a declarative framework for rapid construction of web-based visualization. Vis Inform 2(2):136–146

    Google Scholar 

  • Li H, Yang H, Zhao J, Chen C, Hao F (2018b) Simulation of water surface using current consumer-level graphics hardware. Multimed Tools Appl 77(22):30149–30166

    Google Scholar 

  • Li W, Agrawala M, Curless B, Salesin D (2008) Automated generation of interactive 3d exploded view diagrams. ACM Trans Gr (TOG) 27(3):1–7

    Google Scholar 

  • Li X, Lv Z, Wang W, Zhang B, Hu J, Yin L, Feng S (2016) WebVRGIS based traffic analysis and visualization system. Adv Eng Softw 93:1–8

    Google Scholar 

  • Liimatainen K, Latonen L, Valkonen M, Kartasalo K, Ruusuvuori P (2020) Virtual reality for 3d histology: multi-scale visualization of organs with interactive feature exploration. arXiv preprint arXiv:2003.11148

  • Liu M, Liu G (2010) Smoothed particle hydrodynamics (sph): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    MathSciNet  MATH  Google Scholar 

  • Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2016) Towards better analysis of deep convolutional neural networks. IEEE Trans vis Comput Gr 23(1):91–100

    Google Scholar 

  • Liu S, Ma C, Feng G (2019) Haptic rendering for the coupling between fluid and deformable object. Virtual Real 23(1):33–44

    Google Scholar 

  • Liu S, Xiong Y (2013) Fast and stable simulation of virtual water scenes with interactions. Virtual Real 17(1):77–88

    Google Scholar 

  • Liu S, Yu Z (2015) Sounding fire for immersive virtual reality. Virtual Real 19(3):291–302

    Google Scholar 

  • Lv Z, Yin T, Zhang X, Song H, Chen G (2016) Virtual reality smart city based on WebVRGIS. IEEE Internet Things J 3(6):1015–1024

    Google Scholar 

  • Lynch T, Martins N (2015) Nothing to fear? An analysis of college students’ fear experiences with video games. J Broadcast Electron Media 59(2):298–317

    Google Scholar 

  • Marks S, White D, Singh M (2017) Getting up your nose: a virtual reality education tool for nasal cavity anatomy. In: SIGGRAPH Asia 2017 symposium on education pp 1–7

  • Marriott K, Chen J, Hlawatsch M, Itoh T, Nacenta MA, Reina G, Stuerzlinger W (2018) Just 5 questions: toward a design framework for immersive analytics. In: immersive analytics pp 259–288 Springer, Cham

  • Martinez X, Baaden M (2020) Fair sharing of molecular visualization experiences: from pictures in the cloud to collaborative virtual reality exploration in immersive 3D environments. bioRxiv

  • Mascolino V, Haghighat A, Polys N, Roskoff NJ, Rajamohan S (2019) A collaborative virtual reality system (VRS) with X3D visualization for RAPID. In: proceedings-Web3D 2019: 24th international ACM conference on 3D web technology

  • Medler B, Magerko B (2011) Analytics of play: using information visualization and gameplay practices for visualizing video game data. Parsons J Inform Mapp 3(1):1–12

    Google Scholar 

  • Mehrotra C, Chitransh N, Singh A (2017) Scope and challenges of visual analytics: a survey. In: 2017 international conference on computing, communication and Automation (ICCCA) pp 1229–1234 IEEE

  • Mei H, Chen W, Ma Y, Guan H, Hu W (2018) Viscomposer: a visual programmable composition environment for information visualization. Vis Inform 2(1):71–81

    Google Scholar 

  • Mikropoulos TA, Natsis A (2011) Educational virtual environments: a ten-year review of empirical research (1999–2009). Comput Educ 56(3):769–780

    Google Scholar 

  • Millais P, Jones SL, Kelly R (2018) Exploring data in virtual reality: Comparisons with 2D data visualizations. In: conference on human factors in computing systems-Proceedings pp 5–10

  • Miller JA, Lee V, Cooper S, Seif El-Nasr M (2019) Large-scale analysis of visualization options in a citizen science game. In: extended abstracts of the annual symposium on computer-human interaction in play companion extended abstracts pp 535–542

  • Misiak M, Schreiber A, Fuhrmann A, Zur S, Seider D, Nafeie L (2018) Islandviz: a tool for visualizing modular software systems in virtual reality. In: 2018 IEEE working conference on software visualization (VISSOFT) pp 112–116 IEEE

  • Molka-Danielsen J, Prasolova-Førland E, Hokstad, LM, Fominykh M (2015) Creating safe and effective learning environment for emergency management training using virtural reality. Norsk konferanse for organisasjoners bruk av IT, 23(1)

  • Monaco D, Pellegrino MA, Scarano V, Vicidomini L (2022) Linked open data in authoring virtual exhibitions. J Cult Herit 53:127–142

    Google Scholar 

  • Moon JD, Galea MP (2016) Overview of clinical decision support systems in healthcare. In: Improving health management through clinical decision support systems pp 1–27 IGI Global

  • Munster S, Maiwald F, Lehmann C, Lazariv T, Hofmann M, Niebling, F (2020) An automated pipeline for a browser-based, city-scale mobile 4d vr application based on historical images. In: proceedings of the 2nd workshop on structuring and understanding of multimedia heritage contents pp 33–40

  • Nagao R, Matsumoto K, Narumi T, Tanikawa T, Hirose M (2018) Ascending and descending in virtual reality: simple and safe system using passive haptics. IEEE Trans vis Comput Gr 24(4):1584–1593

    Google Scholar 

  • Oberhauser R, Lecon C (2017) Gamified virtual reality for program code structure comprehension. Int J Virtual Real 17(2):79–88

    Google Scholar 

  • Okada K, Yoshida M, Itoh T, Czauderna T, Stephens K (2018) VR system for spatio-temporal visualization of tweet data

  • Onorati T, Dıaz P, Zarraonandia T, Aedo I (2018) The immersive bubble chart: a semantic and virtual reality visualization for big data. In: the 31st annual ACM symposium on user interface software and technology adjunct proceedings pp 176–178

  • Orts-Escolano S, Rhemann C, Fanello S, Chang W, Kowdle A, Degtyarev Y, Izadi S (2016) Holoportation: virtual 3d teleportation in real-time. In: proceedings of the 29th annual symposium on user interface software and technology pp 741–754

  • Pajorová E, Hluchý L, Kostič I, Pajorová J, Bačáková M, Zatloukal M (2018) A virtual reality visualization tool for three-dimensional biomedical nanostructures. In: journal of physics: conference series Vol 1098, No 1, p 012001. IOP Publishing

  • Pan J, Zhao C, Zhao X, Hao A, Qin H (2015) Metaballs-based physical modeling and deformation of organs for virtual surgery. Vis Comput 31(6):947–957

    Google Scholar 

  • Polys NF, Bowman DA (2004) Design and display of enhancing information in desktop information-rich virtual environments: challenges and techniques. Virtual Real 8(1):41–54

    Google Scholar 

  • Pousman Z, Stasko J, Mateas M (2007) Casual information visualization: depictions of data in everyday life. IEEE Trans vis Comput Gr 13(6):1145–1152

    Google Scholar 

  • Rachevsky DC, Souza VCD, Nedel L (2018) Visualization and interaction in immersive virtual reality games: a user evaluation study. Proceedings-2018 20th symposium on virtual and augmented reality. SVR 2018:89–98

    Google Scholar 

  • Radianti J, Majchrzak TA, Fromm J, Wohlgenannt I (2020) A systematic review of immersive virtual reality applications for higher education: design elements, lessons learned, and research agenda. Comput Educ 147:103778

    Google Scholar 

  • Raya L, Garcia-Rueda JJ, López-Fernández D, Mayor J (2021) Virtual reality application for fostering interest in art. IEEE Comput Gr Appl 41(2):106–113

    Google Scholar 

  • Reddivari S, Smith J, Pabalate J (2017) Vrvisu: a tool for virtual reality-based visualization of medical data. In: 2017 IEEE/ACM international conference on connected health: applications, systems and engineering technologies (CHASE), IEEE, 280–281

  • Rehme M (2018) Using cinematic effects to visualize the deep-water impact data set. 2018 IEEE scientific visualization conference, SciVis 2018 Proceedings, 82–84

  • Ren D, Höllerer T, Yuan X (2014) iVisDesigner: expressive interactive design of information visualizations. IEEE Trans vis Comput Gr 20(12):2092–2101

    Google Scholar 

  • Ren D, Lee B, Hollerer T (2017) Stardust: accessible and transparent GPU support for information visualization rendering. Comput Gr Forum 36(3):179–188

    Google Scholar 

  • Ren H, Hornecker E (2021) Comparing understanding and memorization in physicalization and VR visualization. In: TEI 2021-proceedings of the 15th international conference on tangible, embedded, and embodied interaction

  • Rendgen S (2018) The minard system: the complete statistical graphics of Charles-Joseph Minard. Chronicle Books

  • Rhyne TM, Tory M, Munzner T, Ward M, Johnson C, Laidlaw DH (2003) Information and scientific visualization: separate but equal or happy together at last. In: visualization conference, IEEE pp 115–115 IEEE Computer Society

  • Riccardo MB, Bourdarios AC, Hovdesven M, Vukotic I (2019) Virtual reality and game engines for interactive data visualization and event displays in HEP, an example from the ATLAS experiment. EPJ Web Conf 214:02013

    Google Scholar 

  • Roberts JC, Butcher PW, Ritsos PD (2022) One view is not enough: review of and encouragement for multiple and alternative representations in 3D and immersive visualization. Computers 11(2):20

    Google Scholar 

  • Ronchi E, Nilsson D, Kojić S, Eriksson J, Lovreglio R, Modig H, Walter AL (2016) A virtual reality experiment on flashing lights at emergency exit portals for road tunnel evacuation. Fire Technol 52(3):623–647

    Google Scholar 

  • Rosero F (2017) Assessment of people’s perception of fire growth: a virtual reality study

  • Satyanarayan A, Heer J (2014) Lyra: an interactive visualization design environment. Comput Gr Forum, Wiley Online Lib 33:351–360

    Google Scholar 

  • Satyanarayan A, Moritz D, Wongsuphasawat K, Heer J (2017) Vega-Lite: A grammar of interactive graphics. IEEE Trans Visual Comput Graphics 23(1):341–350

    Google Scholar 

  • Satyanarayan A, Russell R, Hoffswell J, Heer J (2015) Reactive vega: a streaming dataflow architecture for declarative interactive visualization. IEEE Trans vis Comput Gr 22(1):659–668

    Google Scholar 

  • Sauzéon H, Pala PA, Larrue F, Wallet G, Déjos M, Zheng X, Guitton P, N’Kaoua B (2012) The use of virtual reality for episodic memory assessment. Experimental Psychology

  • Schreiber M, Neumann P, Zimmer S, Bungartz HJ (2011) Free-surface lattice-boltzmann simulation on many-core architectures. Proced Comput Sci 4:984–993

    Google Scholar 

  • Schweibenz W (1998) The “virtual museum”: new perspectives for museums to present objects and information using the internet as a knowledge base and communication system. Isi 34:185–200

    Google Scholar 

  • Seaborn K, Fels DI (2015) Gamification in theory and action: a survey. Int J Hum Comput Stud 74:14–31

    Google Scholar 

  • Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization, 618–626

  • Seth A, Vance JM, Oliver JH (2011) Virtual reality for assembly methods prototyping: a review. Virtual Real 15(1):5–20

    Google Scholar 

  • Sevastjanova R, Schafer H, Bernard J, Keim D, ElAssady M (2019) Shall we play?–extending the visual analytics design space through gameful design concepts. In: MLUI 2019: machine learning from user interactions for visualization and analytics, IEEE VIS 2019 workshop

  • Shamsuzzoha A, Toshev R, Vu Tuan V, Kankaanpaa T, Helo P (2019) Digital factory–virtual reality environments for industrial training and maintenance. Interactive learning environments, 1–24

  • Shrestha S, Mohamed MA., Chakraborty J (2016) A comparative pilot study of historical artifacts in a CAVE automatic virtual reality environment versus paper-based artifacts. In: proceedings of the 18th international conference on human-computer interaction with mobile devices and services adjunct, MobileHCI 2016, 968–977

  • Sicat R, Li J, Choi J, Cordeil M, Jeong WK, Bach B, Pfister H (2019) DXR: a toolkit for building immersive data visualizations. IEEE Trans vis Comput Gr 25(1):715–725

    Google Scholar 

  • Skamantzari M (2018) 3D visualization for virtual museum development

  • Slater M, Khanna P, Mortensen J, Yu I (2009) Visual realism enhances realistic response in an immersive virtual environment. IEEE Comput Gr Appl 29(3):76–84

    Google Scholar 

  • Soeiro J, Cláudio AP, Carmo MB, Ferreira HA (2016) Mobile solution for brain visualization using augmented and virtual reality. In: 2016 20th international conference information visualisation (IV), IEEE, 124–129

  • Sommer B, Baaden M, Krone M, Woods A (2018) From virtual reality to immersive analytics in bioinformatics. J Integr Bioinform 15(2):1–6

    Google Scholar 

  • Sooai AG, Nugroho A, Al Azam MN, Sumpeno S, Purnomo MH (2017) Virtual artifact: enhancing museum exhibit using 3D virtual reality. In: 2017 TRON symposium (TRONSHOW), pp 1–5, IEEE

  • Sousa M, Mendes D, Paulo S, Matela N, Jorge J, Lopes DS (2017) Vrrrroom: virtual reality for radiologists in the reading room. In: proceedings of the 2017 CHI conference on human factors in computing systems, pp 4057–4062

  • Steinbeck M, Koschke R, Rudel MO (2019) Comparing the evostreets visualization technique in two-and three-dimensional environments a controlled experiment. In: 2019 IEEE/ACM 27th international conference on program comprehension (ICPC) pp 231–242, IEEE

  • Stolte C, Tang D, Hanrahan P (2002) Polaris: a system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans vis Comput Gr 8(1):52–65

    Google Scholar 

  • Suh A, Prophet J (2018) The state of immersive technology research: a literature analysis. Comput Hum Behav 86:77–90

    Google Scholar 

  • Sun B, Fritz A, Xu W (2019) An immersive visual analytics platform for multidimensional dataset. In: Proceedings-18th IEEE/ACIS international conference on computer and information science, ICIS 2019, 24–29

  • Surer E, Erkayaoğlu M, Öztürk ZN, Yücel F, Bıyık EA, Altan B, Düzgün HŞ (2021) Developing a scenario-based video game generation framework for computer and virtual reality environments: A comparative usability study. J Multimodal User Interfaces 15(4):393–411

    Google Scholar 

  • Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. In: proceedings of the 14th annual conference on Computer graphics and interactive techniques, pp 205–214

  • Thanyadit S, Punpongsanon P, Piumsomboon T, Pong T C (2020) Substituting teleportation visualization for collaborative virtual environments. In: Proceedings-SUI 2020: ACM symposium on spatial user interaction, ACM

  • Tinati R, Luczak-Roesch M, Simperl E, Hall W (2016) Because science is awesome: studying participation in a citizen science game. In: proceedings of the 8th ACM conference on Web Science, 45–54

  • Tinati R, Luczak-Roesch M, Simperl E, Hall W (2017) An investigation of player motivations in eyewire, a gamified citizen science project. Comput Hum Behav 73:527–540

    Google Scholar 

  • Tommasini R, Sakr S, Balduini M, Valle ED (2019) An outlook to declarative languages for big steam-ring data. In: proceedings of the 13th ACM international conference on distributed and event-based systems, 199–202

  • Tsuji T, Ogata K (2015) Rehabilitation systems based on visualization techniques: a review. J Robot Mechatron 27(2):122–125

    Google Scholar 

  • Usher W, Klacansky P, Federer F, Bremer PT, Knoll A, Yarch J, Angelucci A, Pascucci V (2017) A virtual reality visualization tool for neuron tracing. IEEE Trans vis Comput Gr 24(1):994–1003

    Google Scholar 

  • Vahdatikhaki F, Langroodi AK, Makarov D, Miller S (2019) Context-realistic virtual reality-based training simulators for asphalt operations. In: ISARC Proceedings of the International Symposium on Automation and Robotics in Construction, IAARC Publications, vol 36, 218–225

  • Vincur J, Navrat P, Polasek I (2017) VR city: software analysis in virtual reality environment. In: 2017 IEEE international conference on software quality, reliability and security companion

  • Voinea A, Moldoveanu A, Moldoveanu F (2015) 3D visualization in IT systems used for post stroke recovery: rehabilitation based on virtual reality. In: 2015 20th international conference on control systems and computer Science pp 856–862, IEEE

  • Wallner G, Kriglstein S (2013) Visualization-based analysis of gameplay data: a review of literature. Entertain Comput 4(3):143–155

    Google Scholar 

  • Wang M, Ma Y (2018) A review of virtual cutting methods and technology in deformable objects. Int J Med Robot Comput Assist Surg 14(5):e1923

    Google Scholar 

  • Wang P, Wu P, Wang J, Chi HL, Wang X (2018) A critical review of the use of virtual reality in construction engineering education and training. Int J Environ Res Public Health 15(6):1204

    Google Scholar 

  • Wanick V, Castle J, Wittig A (2019) Applying games design thinking for scientific data visualization in virtual reality environments

  • Ware C, Arthur K, Booth KS (1993) Fish tank virtual reality. In: proceedings of the INTERACT'93 and CHI'93 conference on human factors in computing systems, 37–42

  • Wilkinson L (2012) The grammar of graphics. In: handbook of computational statistics, pp 375–414, Springer

  • Wongsuphasawat K, Gotz D (2011) Outflow: visualizing patient flow by symptoms and outcome. In: IEEE VisWeek workshop on visual analytics in healthcare, pp 25–28. Providence, Rhode Island, USA: American Medical Informatics Association

  • Wu H, Shi D, Chen N, Shi Y, Jin Z, Cao N (2020) VisAct: a visualization design system based on semantic actions. J vis 23(2):339–352

    Google Scholar 

  • Xia H, Herscher S, Perlin K, Wigdor D (2018a) Spacetime: enabling fluid individual and collaborative editing in virtual reality. In: proceedings of the 31st annual ACM symposium on user interface software and technology (UIST 2018a), pp 853–866

  • Xia H, Herscher S, Perlin K, Wigdor D (2018b) Spacetime: enabling fluid individual and collaborative editing in virtual reality

  • Xu J, Lin Y, Schmidt D (2017) Exploring the influence of simulated road environments on cyclist behavior. Int J Virtual Real 17(3):15–26

    Google Scholar 

  • Yan F, Hu Y, Jia J, Ai Z, Tang K, Shi Z, Liu X (2020) Interactive WebVR visualization for online fire evacuation training. Multimed Tools Appl 79(41–42):31541–31565

    Google Scholar 

  • Yang B, Shi W, Li Q (2005) A dynamic method for generating multi-resolution tin models. Photogramm Eng Remote Sens 71(8):917–926

    Google Scholar 

  • Yates M, Kelemen A, Sik Lanyi C (2016) Virtual reality gaming in the rehabilitation of the upper extremities post-stroke. Brain Inj 30(7):855–863

    Google Scholar 

  • Yin H, Varava A, Kragic D (2021) Modeling, learning, perception, and control methods for deformable object manipulation. Sci Robot, 6(54): eabd8803

  • Yoo S, Xue L, Kay J (2017) Happyfit: time-aware visualization for daily physical activity and virtual reality games. UMAP 2017 adjunct publication of the 25th conference on user modeling, adaptation and personalization, 391–394

  • Yu P, Pan J, Qin H, Hao A, Wang H (2020) Real-time suturing simulation for virtual reality medical training. Comput Anim Virtual W 31(4–5):e1940

    Google Scholar 

  • Zebari R, Abdulazeez A, Zeebaree D, Zebari D, Saeed J (2020) A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. J Appl Sci Technol Trends 1(2):56–70

    Google Scholar 

  • Zhang X, Liu S (2017) Sph haptic interaction with multiple-fluid simulation. Virtual Real 21(4):165–175

    Google Scholar 

  • Zhang Y, Liu H, Kang SC, Al-Hussein M (2020) Virtual reality applications for the built environment: research trends and opportunities. Autom Constr 118:103311

    Google Scholar 

  • Zimmermann P (2008) Virtual reality aided design. A survey of the use of vr in automotive industry. In: Product Engineering pp 277–296, Springer

  • Zyda M (2005) From visual simulation to virtual reality to games. Comput 38(9):25–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Surer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkut, E.H., Surer, E. Visualization in virtual reality: a systematic review. Virtual Reality 27, 1447–1480 (2023). https://doi.org/10.1007/s10055-023-00753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-023-00753-8

Keywords

Navigation