Skip to main content

Advertisement

Log in

NLRP3 in tumor-associated macrophages predicts a poor prognosis and promotes tumor growth in head and neck squamous cell carcinoma

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays cell- and tissue-specific roles in cancer, meaning that its activation in different tumors or cells may play different roles in tumor progression. We have previously described the tumor-promoting function of tumor-intrinsic NLRP3/IL-1β signaling in head and neck squamous cell carcinoma (HNSCC), but its role in immune cells remains unclear. In this study, we found that NLRP3 was highly expressed in tumor-associated macrophages (TAMs) in both mouse and human HNSCC, and the expression of NLRP3 was positively correlated with the density of TAMs according to immunohistochemistry, immunofluorescence, and flow cytometry analyses. Importantly, the number of NLRP3high TAMs was related to worse overall survival in HNSCC patients. Knocking out NLRP3 inhibited M2-like macrophage differentiation in vitro. Moreover, the carcinogenic effect induced by 4-nitroquinoline-1-oxide was decreased in Nlrp3-deficient mice, which had smaller tumor sizes. Genetic depletion of NLRP3 reduced the expression of protumoral cytokines, such as IL-1β, IL-6, IL-10, and CCL2, and suppressed the accumulation of TAMs and myeloid-derived suppressor cells (MDSCs) in mouse HNSCC. Thus, activation of NLRP3 in TAMs may contribute to tumor progression and have prognostic significance in HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4NQO:

4-Nitroquinoline-1-oxide

CM:

Cultured medium

HNSCC:

Head and neck squamous cell carcinoma

MDSCs:

Myeloid-derived suppressor cells

NLRP3:

NOD-like receptor family pyrin domain-containing 3

OS:

Overall survival

PBMCs:

Peripheral blood mononuclear cells

PDA:

Pancreatic ductal adenocarcinoma

TAMs:

Tumor-associated macrophages

TCGA:

The cancer genome atlas

TME:

Tumor microenvironment

TILs:

Tumor-infiltrating lymphocytes

References

  1. Taniguchi K, Karin M (2018) NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18:309–324. https://doi.org/10.1038/nri.2017.142

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12:31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

    Article  CAS  PubMed  Google Scholar 

  3. Swanson KV, Deng M, Ting JPY (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 44:1229–1245. https://doi.org/10.1038/s41577-019-0165-0

    Article  CAS  Google Scholar 

  4. Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A (2018) Role of the NLRP3 inflammasome in cancer. Mol Cancer 17:158. https://doi.org/10.1186/s12943-018-0900-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karki R, Kanneganti TD (2019) Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer 19:197–214. https://doi.org/10.1038/s41568-019-0123-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharma BR, Kanneganti TD (2021) NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 22:550–559. https://doi.org/10.1038/s41590-021-00886-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferris RL (2015) Immunology and immunotherapy of head and neck cancer. J Clin Oncol 33:3293–3304. https://doi.org/10.1200/JCO.2015.61.1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson DE, Burtness B, Leemans CR et al (2020) Head and neck squamous cell carcinoma. Nat Rev Dis Primers 6:92. https://doi.org/10.1038/s41572-020-00224-3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bonomi M, Patsias A, Posner M, Sikora A (2014) The role of inflammation in head and neck cancer. Adv Exp Med Biol 816:107–127. https://doi.org/10.1007/978-3-0348-0837-8_5

    Article  CAS  PubMed  Google Scholar 

  10. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  11. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  12. Cramer JD, Burtness B, Le QT, Ferris RL (2019) The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol 16:669–683. https://doi.org/10.1038/s41571-019-0227-z

    Article  PubMed  Google Scholar 

  13. Wang H, Luo QQ, Feng XD et al (2018) NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer 18:500. https://doi.org/10.1186/s12885-018-4403-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng XD, Luo QQ, Han Z et al (2017) The role of NLRP3 inflammasome in 5-fluorouracil resistance of oral squamous cell carcinoma. J Exp Clin Cancer Res 36:81. https://doi.org/10.1186/s13046-017-0553-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang CF, Chen L, Li YC et al (2017) NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res 36:116. https://doi.org/10.1186/s13046-017-0589-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen L, Huang CF, Li YC et al (2018) Blockage of the NLRP3 inflammasome by MCC950 improves anti-tumor immune responses in head and neck squamous cell carcinoma. Cell Mol Life Sci 75:2045–2058. https://doi.org/10.1007/s00018-017-2720-9

    Article  CAS  PubMed  Google Scholar 

  17. Xiang X, Wang J, Lu D, Xu X (2021) Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 6:75. https://doi.org/10.1038/s41392-021-00484-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40:310–327. https://doi.org/10.1016/j.it.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  19. Evrard D, Szturz P, Tijeras-Raballand A et al (2019) Macrophages in the microenvironment of head and neck cancer: potential targets for cancer therapy. Oral Oncol 88:29–38. https://doi.org/10.1016/j.oraloncology.2018.10.040

    Article  CAS  PubMed  Google Scholar 

  20. Deng QT, Geng Y, Zhao LY et al (2019) NLRP3 inflammasomes in macrophages drive colorectal cancer metastasis to the liver. Cancer Lett 442:21–30. https://doi.org/10.1016/j.canlet.2018.10.030

    Article  CAS  PubMed  Google Scholar 

  21. Weichand B, Popp R, Dziumbla S et al (2017) S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β. J Exp Med 214:2695–2713. https://doi.org/10.1084/jem.20160392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daley D, Mani VR, Mohan N et al (2017) NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med 214:1711–1724. https://doi.org/10.1084/jem.20161707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang MM, Chen XW, Wang LJ et al (2020) Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. J Exp Clin Cancer Res 39:176. https://doi.org/10.1186/s13046-020-01688-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hofbauer D, Mougiakakos D, Broggini L et al (2021) β2-microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression. Immunity 54:1772–1787. https://doi.org/10.1016/j.immuni.2021.07.002

    Article  CAS  PubMed  Google Scholar 

  25. Bian Y, Hall B, Sun ZJ et al (2012) Loss of TGF-β signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene 31:3322–3332. https://doi.org/10.1038/onc.2011.494

    Article  CAS  PubMed  Google Scholar 

  26. Chen L, Yang QC, Li YC et al (2020) Targeting CMTM6 suppresses stem cell-like properties and enhances antitumor immunity in head and neck squamous cell carcinoma. Cancer Immunol Res 8:179–191. https://doi.org/10.1158/2326-6066.CIR-19-0394

    Article  CAS  PubMed  Google Scholar 

  27. Chandrashekar DS, Bashel B, Balasubramanya SAH et al (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19:649–658. https://doi.org/10.1016/j.neo.2017.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ruffin AT, Li H, Vujanovic L et al (2022) Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer. https://doi.org/10.1038/s41568-022-00531-9

    Article  PubMed  Google Scholar 

  29. Yang H, Zhang QN, Xu M et al (2020) CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer 19:41. https://doi.org/10.1186/s12943-020-01165-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Deventer HW, Burgents JE, Wu QP et al (2011) The inflammasome component Nlrp3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res 70:10161–10169. https://doi.org/10.1158/0008-5472.CAN-10-1921

    Article  CAS  Google Scholar 

  31. Tengesdal IW, Menon DR, Osborne DG et al (2021) Targeting tumor-derived NLRP3 reduces melanoma progression by limiting MDSCs expansion. Proc Natl Acad Sci USA 118:e2000915118. https://doi.org/10.1073/pnas.2000915118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Greten FR, Grivennikov SI (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51:27–41. https://doi.org/10.1016/j.immuni.2019.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ju MY, Bi J, Wei Q et al (2021) Pan-cancer analysis of NLRP3 inflammasome with potential implications in prognosis and immunotherapy in human cancer. Brief Bioinform 22:bbaa345. https://doi.org/10.1093/bib/bbaa345

    Article  CAS  PubMed  Google Scholar 

  34. Hamarsheh S, Zeiser R (2020) NLRP3 inflammasome activation in cancer: a double-edged sword. Front Immunol 11:1444. https://doi.org/10.3389/fimmu.2020.01444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti TD (2010) IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol 185:4912–4920. https://doi.org/10.4049/jimmunol.1002046

    Article  CAS  PubMed  Google Scholar 

  36. Dupaul-Chicoine J, Arabzadeh A, Dagenais M et al (2015) The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity 43:751–763. https://doi.org/10.1016/j.immuni.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  37. Tu S, Bhagat G, Cui G et al (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14:408–419. https://doi.org/10.1016/j.ccr.2008.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Das S, Shapiro B, Vucic EA, Vogt S, Bar-Sagi D (2020) Tumor cell-derived IL-1β promotes desmoplasia and immune suppression in pancreatic cancer. Cancer Res 80:1088–1101. https://doi.org/10.1158/0008-5472.CAN-19-2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Theivanthiran B, Evans KS, Devito NC et al (2020) A tumor-intrinsic PD-L1-NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest 130:2570–2586. https://doi.org/10.1172/JCI133055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bruchard M, Mignot G, Derangère V et al (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19:57–64. https://doi.org/10.1038/nm.2999

    Article  CAS  PubMed  Google Scholar 

  41. Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15:1170–1178. https://doi.org/10.1038/nm.2028

    Article  CAS  PubMed  Google Scholar 

  42. Ding Y, Yan YL, Dong YH et al (2022) NLRP3 promotes immune escape by regulating immune checkpoints: a pan-cancer analysis. Int Immunopharmacol 104:108512. https://doi.org/10.1016/j.intimp.2021.108512

    Article  CAS  PubMed  Google Scholar 

  43. Kaplanov I, Carmi Y, Kornetsky R et al (2019) Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci USA 116:1361–1369. https://doi.org/10.1073/pnas.1812266115

    Article  CAS  PubMed  Google Scholar 

  44. Dixon KO, Tabaka M, Schramm MA et al (2021) TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature 595:101–106. https://doi.org/10.1038/s41586-021-03626-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51. https://doi.org/10.1016/j.cell.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vered M, Yarom N, Dayan D (2005) 4NQO oral carcinogenesis: animal models, molecular markers and future expectations. Oral Oncol 41:337–339. https://doi.org/10.1016/j.oraloncology.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  47. Vitale-Cross L, Czerninski R, Amornphimoltham P et al (2009) Chemical carcinogenesis models for evaluating molecular-targeted prevention and treatment of oral cancer. Cancer Prev Res (Phila) 2:419–422. https://doi.org/10.1158/1940-6207.CAPR-09-0058

    Article  CAS  PubMed  Google Scholar 

  48. Zeng Q, Fu J, Korrer M et al (2018) Caspase-1 from human myeloid derived suppressor cells can promote T-cell independent tumor proliferation. Cancer Immunol Res 6:566–577. https://doi.org/10.1158/2326-6066.CIR-17-0543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Shuyan Liang and Juan Zhang from Wuhan Biobank Co.,Ltd for their excellent technical assistance on flow cytometry.

Funding

This work was supported by National Natural Science Foundation of China (82103670, 81972548, 82072996, 81874131), Fundamental Research Funds for the Central Universities (2042021kf0173).

Author information

Authors and Affiliations

Authors

Contributions

CL, SZJ and BLL conceptualized the study. CL, WSC and ML developed methodology. CL, WSC and ML performed the experiments. CL and HCF analyzed data. CL, SZJ and BLL wrote the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Lin-Lin Bu or Zhi-Jun Sun.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Consent for publication

All participants who provided a specimen (peripheral blood or surgically resected tumor tissues) signed informed consent under an approved institutional guideline and agreed to use the samples for research and publication.

Ethical approval

All animal studies were approved by the Institutional Animal Care and Use Committees at the School and Hospital of Stomatology of Wuhan University (S07918040F and S07922050F). All the human samples were collected from the School and Hospital of Stomatology, Wuhan University, and all experiments were approved by the Medical Ethics Committee (2014LUNSHENZI06, 2016LUNSHENZI62 and 2019LUNSHENZIA24).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 20042 KB)

Supplementary file2 (PDF 219 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wan, SC., Mao, L. et al. NLRP3 in tumor-associated macrophages predicts a poor prognosis and promotes tumor growth in head and neck squamous cell carcinoma. Cancer Immunol Immunother 72, 1647–1660 (2023). https://doi.org/10.1007/s00262-022-03357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03357-4

Keywords

Navigation