Skip to main content
Log in

Precipitation Drives Soil Protist Diversity and Community Structure in Dry Grasslands

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Protists are essential components of soil microbial communities, mediating nutrient cycling and ecosystem functions in terrestrial ecosystems. However, their distribution patterns and driving factors, particularly, the relative importance of climate, plant and soil factors, remain largely unknown. This limits our understanding of soil protist roles in ecosystem functions and their responses to climate change. This is particularly a concern in dryland ecosystems where soil microbiomes are more important for ecosystem functions because plant diversity and growth are heavily constrained by environmental stresses. Here, we explored protist diversity and their driving factors in grassland soils on the Tibetan Plateau, which is a typical dryland region with yearly low temperatures. Soil protist diversity significantly decreased along the gradient of meadow, steppe, and desert. Soil protist diversity positively correlated with precipitation, plant biomass and soil nutrients, but these correlations were changed by grazing. Structural equation and random forest models demonstrated that precipitation dominated soil protist diversity directly and indirectly by influencing plant and soil factors. Soil protist community structure gradually shifted along meadow, steppe and desert, and was driven more by precipitation than by plant and soil factors. Soil protist community compositions were dominated by Cercozoa, Ciliophora and Chlorophyta. In particular, Ciliophora increased but Chlorophyta decreased in relative abundance along the gradient of meadow, steppe and desert. These results demonstrate that precipitation plays more important roles in driving soil protist diversity and community structure than plant and soil factors, suggesting that future precipitation change profoundly alters soil protist community and functions in dry grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The raw sequencing reads generated have been deposited in the NCBI Sequence Read Archive (http://www.ebi.ac.uk/ena) under project ID PRJNA895936.

References

  1. Adl SM, Simpson AGB, Lane CE, Lukes J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E (2012) The revised classification of eukaryotes. Estuar Coast Shelf Sci 59:429–493. https://doi.org/10.1111/j.1550-7408.2012.00644.x

    Article  Google Scholar 

  2. Schulz G, Schneider D, Brinkmann N, Edy N, Daniel R, Polle A, Scheu S, Krashevska V (2019) Changes in trophic groups of protists with conversion of rainforest into rubber and oil palm plantations. Front Microbiol 10:240. https://doi.org/10.3389/fmicb.2019.00240

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nguyen BAT, Chen QL, Yan ZZ, Li CY, He JZ, Hu HW (2021) Distinct factors drive the diversity and composition of protistan consumers and phototrophs in natural soil ecosystems. Soil Biol Biochem 160:108317. https://doi.org/10.1016/j.soilbio.2021.108317

    Article  CAS  Google Scholar 

  4. Dai Z, Xiong X, Zhu H, Xu H, Leng P, Li J, Tang C, Xu J (2021) Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar 3:239–254. https://doi.org/10.1007/s42773-021-00099-x

    Article  CAS  Google Scholar 

  5. Guo S, Tao C, Jousset A, Xiong W, Wang Z, Shen Z, Wang B, Xu Z, Gao Z, Liu S, Li R, Ruan Y, Shen Q, Kowalchuk GA, Geisen S (2022) Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. ISME J 16:1932–1943. https://doi.org/10.1038/s41396-022-01244-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bahroun A, Jousset A, Mrabet M, Mhamdi R, Mhadhbi H (2021) Protists modulate Fusarium root rot suppression by beneficial bacteria. Appl Soil Ecol 168:104158. https://doi.org/10.1016/j.apsoil.2021.104158

    Article  Google Scholar 

  7. Geisen S, Mitchell EA, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 42:293–323. https://doi.org/10.1093/femsre/fuy006

    Article  CAS  PubMed  Google Scholar 

  8. Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A (2019) Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci 24:165–176. https://doi.org/10.1016/j.tplants.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  9. Krashevska V, Maraun M, Scheu S (2012) How does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests? FEMS Microbiol Ecol 80:603–607. https://doi.org/10.1111/j.1574-6941.2012.01327.x

    Article  CAS  PubMed  Google Scholar 

  10. Arndt H, Ritter B, Rybarski A, Schiwitza S, Dunai T, Nitsche F (2020) Mirroring the effect of geological evolution: protist divergence in the Atacama Desert. Glob Planet Chang 190:103193. https://doi.org/10.1016/j.gloplacha.2020.103193

    Article  Google Scholar 

  11. Thompson AR, Powell GS, Adams BJ (2019) Provisional checklist of terrestrial heterotrophic protists from Antarctica. Antarct Sci 31:287–303. https://doi.org/10.1017/S0954102019000361

    Article  Google Scholar 

  12. Stefan G, Cornelia B, Jorg R, Michael B (2014) Soil water availability strongly alters the community composition of soil protists. Pedobiologia 57:205–213. https://doi.org/10.1016/j.pedobi.2014.10.001

    Article  Google Scholar 

  13. Hammill E, Dart R (2022) Contributions of mean temperature and temperature variation to population stability and community diversity. Ecol Evol 12:e8665. https://doi.org/10.1002/ece3.8665

    Article  PubMed  PubMed Central  Google Scholar 

  14. Atkinson D, Ciotti BJ, Montagnes DJS (2003) Protists decrease in size linearly with temperature: ca. 2.5% °C−1. Proc R Soc Lond B 270:2605–2611. https://doi.org/10.1098/rspb.2003.2538

  15. Chen QL, Hu HW, Sun AQ, Zhu YG, He JZ (2022) Aridity decreases soil protistan network complexity and stability. Soil Biol Biochem 166:108575. https://doi.org/10.1016/j.soilbio.2022.108575

    Article  CAS  Google Scholar 

  16. De Araujo ASF, Mendes LW, Lemos LN, Antunes JEL, Beserra JEA, de Lyra M, Figueiredo MDB, Lopes ACD, Gomes RLF, Bezerra WM, Melo VMM, de Araujo FF, Geisen S (2018) Protist species richness and soil microbiome complexity increase towards climax vegetation in the Brazilian Cerrado. Commun Biol 1:1–8. https://doi.org/10.1038/s42003-018-0129-0

    Article  Google Scholar 

  17. Romdhane S, Spor A, Banerjee S, Breuil MC, Bru D, Chabbi A, Hallin S, van der Heijden MGA, Saghai A, Philippot L (2022) Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity. Environ Microbiome 17:1–15. https://doi.org/10.1186/s40793-021-00396-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Asiloglu R, Samuel SO, Sevilir B, Akca MO, Bozkurt PA, Suzuki K, Murase J, Turgay OC, Harada N (2021) Biochar affects taxonomic and functional community composition of protists. Biol Fertil Soils 57:15–29. https://doi.org/10.1007/s00374-020-01502-8

    Article  Google Scholar 

  19. Zhao Z-B, He J-Z, Geisen S, Han L-L, Wang J-T, Shen J-P, Wei W-X, Fang Y-T, Li P-P, Zhang L-M (2019) Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome 7:1–16. https://doi.org/10.1186/s40168-019-0647-0

    Article  Google Scholar 

  20. Clarholm M, Bonkowski M, Griffiths B (2007) Protozoa and other protista in soil 147–175.

  21. Meisner A, Snoek BL, Nesme J, Dent E, Jacquiod S, Classen AT, Priemé A (2021) Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles. ISME J 15:1207–1221. https://doi.org/10.1038/s41396-020-00844-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu ZK, Yao JN, Chen XY, Gong X, Zhang Y, Zhou XH, Guo H, Liu MQ (2022) Precipitation changes, warming, and N input differentially affect microbial predators in an alpine meadow: evidence from soil phagotrophic protists. Soil Biol Biochem 165:108521. https://doi.org/10.1016/j.soilbio.2021.108521

    Article  CAS  Google Scholar 

  23. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257. https://doi.org/10.1007/s11104-008-9814-y

    Article  CAS  Google Scholar 

  24. Ceja-Navarro JA, Wang Y, Ning D, Arellano A, Ramanculova L, Yuan MM, Byer A, Craven KD, Saha MC, Brodie EL, Pett-Ridge J, Firestone MK (2021) Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop. Microbiome 9:96. https://doi.org/10.1186/s40168-021-01042-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Asiloglu R, Shiroishi K, Suzuki K, Turgay OC, Harada N (2021) Soil properties have more significant effects on the community composition of protists than the rhizosphere effect of rice plants in alkaline paddy field soils. Soil Biol Biochem 161:108397. https://doi.org/10.1016/j.soilbio.2021.108397

    Article  CAS  Google Scholar 

  26. Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18:607–621. https://doi.org/10.1038/s41579-020-0412-1

    Article  CAS  PubMed  Google Scholar 

  27. Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N (2020) The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv 6. https://doi.org/10.1126/sciadv.aax8787

  28. Fournier B, Steiner M, Brochet X, Degrune F, Mammeri J, Carvalho DL, Siliceo SL, Bacher S, Pena-Reyes A, Heger TJ (2022) Toward the use of protists as bioindicators of multiple stresses in agricultural soils: a case study in vineyard ecosystems. Ecol Indic 139:108955. https://doi.org/10.1016/j.ecolind.2022.108955

    Article  CAS  Google Scholar 

  29. Ledeganck P, Nijs I, Beyens L (2003) Plant functional group diversity promotes soil protist diversity. Protist 154:239–249. https://doi.org/10.1078/143446103322166536

    Article  PubMed  Google Scholar 

  30. Qiu J (2008) The third pole. Nature 454:393–396. https://doi.org/10.1038/454393a

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Li B, Zheng D (2014) Datasets of the boundary and area of the Tibetan Plateau. Acta Geographica Sinica 69:164–168. http://www.geodoi.ac.cn/WebEn/doi.aspx?doi=10.3974/geodb.2014.01.12.v1

  32. Li X, Liang E, Gričar J, Rossi S, Čufar K, Ellison AM (2017) Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Sci Bull 62:804–812. https://doi.org/10.1016/j.scib.2017.04.025

    Article  Google Scholar 

  33. Wang X, Pang G, Yang M (2018) Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations. Int J Climatol 38:1116–1131. https://doi.org/10.1002/joc.5246

    Article  Google Scholar 

  34. Ye C, Sun J, Liu M, Xiong J, Zong N, Hu J, Huang Y, Duan X, Tsunekawa A (2020) Concurrent and lagged effects of extreme drought induce net reduction in vegetation carbon uptake on Tibetan Plateau. Remote Sens 12:2347. https://doi.org/10.3390/rs12152347

    Article  Google Scholar 

  35. Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MAK, Ballare CL, Flint SD (2019) Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem Photobiol Sci 18:681–716. https://doi.org/10.1039/c8pp90061b

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Lv W, Xue K, Wang S, Zhang L, Hu R, Zeng H, Xu X, Li Y, Jiang L, Hao Y, Du J, Sun J, Dorji T, Piao S, Wang C, Luo C, Zhang Z, Chang X, Zhang M, Hu Y, Wu T, Wang J, Li B, Liu P, Zhou Y, Wang A, Dong S, Zhang X, Gao Q, Zhou H, Shen M, Wilkes A, Miehe G, Zhao X, Niu H (2022) Grassland changes and adaptive management on the Qinghai-Tibetan Plateau. Nat Rev Earth Environ 3:668–683. https://doi.org/10.1038/s43017-022-00330-8

    Article  Google Scholar 

  37. Chai J, Yu X, Xu C, Xiao H, Zhang J, Yang H, Pan T (2019) Effects of yak and Tibetan sheep trampling on soil properties in the northeastern Qinghai-Tibetan Plateau. Appl Soil Ecol 144:147–154. https://doi.org/10.1016/j.apsoil.2019.07.017

    Article  Google Scholar 

  38. Fournier B, Steiner M, Brochet X, Degrune F, Mammeri J, Carvalho DL, Siliceo SL, Bacher S, Peña-Reyes CA, Heger TJ (2022) Toward the use of protists as bioindicators of multiple stresses in agricultural soils: a case study in vineyard ecosystems. Ecol Indic 139:108955. https://doi.org/10.1016/j.ecolind.2022.108955

    Article  CAS  Google Scholar 

  39. Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK (2010) Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4:1053–1059. https://doi.org/10.1038/ismej.2010.26

    Article  PubMed  Google Scholar 

  40. Lutz S, Anesio AM, Raiswell R, Edwards A, Newton RJ, Gill F, Benning LG (2016) The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat Commun 7:11968. https://doi.org/10.1038/ncomms11968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dai Z, Lv X, Ma B, Chen N, Chang SX, Lin J, Wang X, Su W, Liu H, Huang Y, Hu C, Luo Y, Dahlgren RA, Xu J (2021) Concurrent and rapid recovery of bacteria and protist communities in Canadian boreal forest ecosystems following wildfire. Soil Biol Biochem 163:108452. https://doi.org/10.1016/j.soilbio.2021.108452

    Article  CAS  Google Scholar 

  42. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/Nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  46. Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WHCF, Lara E, Le Bescot N, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet A-L, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R (2012) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:D597–D604. https://doi.org/10.1093/nar/gks1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosseel Y (2012) lavaan: An R Package for structural equation modeling. J Stat Softw 48:1–36. https://doi.org/10.18637/jss.v048.i02

    Article  Google Scholar 

  48. Deng MS, Meng XH, Li ZG, Lyv YQ, Lei HJ, Zhao L, Zhao SN, Ge J, Jing H (2020) Responses of soil moisture to regional climate change over the Three Rivers Source Region on the Tibetan Plateau. Int J Climatol 40:2403–2417. https://doi.org/10.1002/joc.6341

    Article  Google Scholar 

  49. Zhang Q, Fan KK, Singh VP, Song CQ, Xu CY, Sun P (2019) Is Himalayan-Tibetan Plateau “drying”? Historical stimations and future trends of surface soil moisture. Sci Total Environ 658:374–384. https://doi.org/10.1016/j.scitotenv.2018.12.209

    Article  CAS  PubMed  Google Scholar 

  50. Zhang CH, Xi NX (2021) Precipitation changes regulate plant and soil microbial biomass via plasticity in plant biomass allocation in grasslands: a meta-analysis. Front Plant Sci 12:614968. https://doi.org/10.3389/fpls.2021.614968

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zeglin LH, Bottomley PJ, Jumpponen A, Rice CW, Arango M, Lindsley A, McGowan A, Mfombep P, Myrold DD (2013) Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology 94:2334–2345. https://doi.org/10.1890/12-2018.1

    Article  CAS  PubMed  Google Scholar 

  52. Zheng Z, Ma XY, Zhang Y, Liu YJ, Zhang SH (2022) Soil properties and plant community-level traits mediate arbuscular mycorrhizal fungal response to nitrogen enrichment and altered precipitation. Appl Soil Ecol 169:104254. https://doi.org/10.1016/j.apsoil.2021.104245

    Article  Google Scholar 

  53. He ZM, Jia GD, Liu ZQ, Zhang ZY, Yu XX, Hao PQ (2020) Field studies on the influence of rainfall intensity, vegetation cover and slope length on soil moisture infiltration on typical watersheds of the Loess Plateau, China. Hydrol Process 34:4904–4919. https://doi.org/10.1002/hyp.13892

    Article  Google Scholar 

  54. Xue X, Guo J, Han BSA, Sun QW, Liu LC (2009) The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. Geomorphology 108:182–190. https://doi.org/10.1016/j.geomorph.2009.01.004

    Article  Google Scholar 

  55. Xu R, Zhang MM, Lin HZ, Gao P, Yang ZH, Wang DB, Sun XX, Li BQ, Wang Q, Sun WM (2022) Response of soil protozoa to acid mine drainage in a contaminated terrace. J Hazard Mater 421:126790. https://doi.org/10.1016/j.jhazmat.2021.126790

    Article  CAS  PubMed  Google Scholar 

  56. Asiloglu R, Kenya K, Samuel SO, Sevilir B, Murase J, Suzuki K, Harada N (2021) Top-down effects of protists are greater than bottom-up effects of fertilisers on the formation of bacterial communities in a paddy field soil. Soil Biol Biochem 156:108186. https://doi.org/10.1016/j.soilbio.2021.108186

    Article  CAS  Google Scholar 

  57. Lara E, Mitchell EAD, Moreira D, Garcia PL (2011) Highly diverse and seasonally dynamic protist community in a pristine peat bog. Protist 162:14–32. https://doi.org/10.1016/j.protis.2010.05.003

    Article  PubMed  Google Scholar 

  58. Marcisz K, Lamentowicz L, Slowinska S, Slowinski M, Muszak W, Lamentowicz M (2014) Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. Eur J Protistol 50:445–455. https://doi.org/10.1016/j.ejop.2014.07.001

    Article  PubMed  Google Scholar 

  59. Geisen S (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biol Biochem 102:22–25. https://doi.org/10.1016/j.soilbio.2016.06.013

    Article  CAS  Google Scholar 

  60. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x

    Article  CAS  PubMed  Google Scholar 

  61. Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P (2018) Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J 12:1252–1262. https://doi.org/10.1038/s41396-017-0035-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dupont AOC, Griffiths RI, Bell T, Bass D (2016) Differences in soil micro-eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs. Environ Microbiol 18:2010–2024. https://doi.org/10.1111/1462-2920.13220

    Article  CAS  PubMed  Google Scholar 

  63. Islam W, Saqib HSA, Adnan M, Wang ZY, Tayyab M, Huang ZQ, Chen HYH (2022) Differential response of soil microbial and animal communities along the chronosequence of Cunninghamia lanceolata at different soil depth levels in subtropical forest ecosystem. J Adv Res 38:41–54. https://doi.org/10.1016/j.jare.2021.08.005

    Article  CAS  PubMed  Google Scholar 

  64. Guan NZ, Li JH, Shin HD, Du GC, Chen J, Liu L (2017) Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biot 101:3991–4008. https://doi.org/10.1007/s00253-017-8264-y

    Article  CAS  Google Scholar 

  65. Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37:112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x

    Article  CAS  PubMed  Google Scholar 

  66. Bardgett RD, Caruso T (2020) Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos Trans R Soc B: Biol Sci 375:20190112. https://doi.org/10.1098/rstb.2019.0112

    Article  CAS  Google Scholar 

  67. Jiang YB, Zhang YJ, Wu YP, Hu RG, Zhu JT, Tao J, Zhang T (2017) Relationships between aboveground biomass and plant cover at two spatial scales and their determinants in northern Tibetan grasslands. Ecol Evol 7:7954–7964. https://doi.org/10.1002/ece3.3308

    Article  PubMed  PubMed Central  Google Scholar 

  68. Roshan SK, Dumack K, Bonkowski M, Leinweber P, Karsten U, Glaser K (2021) Taxonomic and functional diversity of heterotrophic protists (Cercozoa and endomyxa) from biological soilcrusts. Microorganisms 9:205. https://doi.org/10.3390/microorganisms9020205

    Article  CAS  Google Scholar 

  69. Asiloglu R, Murase J (2017) Microhabitat segregation of heterotrophic protists in the rice (Oryza sativa L.) rhizosphere. Rhizosphere 4:82–88. https://doi.org/10.1016/j.rhisph.2017.08.001

    Article  Google Scholar 

  70. Fiore-Donno AM, Richter-Heitmann T, Degrune F, Dumack K, Regan KM, Marhan S, Boeddinghaus RS, Rillig MC, Friedrich MW, Kandeler E, Bonkowski M (2019) Functional traits and spatio-temporal structure of a major group of soil protists (Rhizaria: Cercozoa) in a temperate grassland. Front Microbiol 10:1332. https://doi.org/10.3389/fmicb.2019.01332

    Article  PubMed  PubMed Central  Google Scholar 

  71. Degrune F, Dumack K, Fiore-Donno AM, Bonkowski M, Sosa-Hernández MA, Schloter M, Kautz T, Fischer D, Rillig MC (2019) Distinct communities of Cercozoa at different soil depths in a temperate agricultural field. FEMS Microbiol Ecol 95:fiz041. https://doi.org/10.1093/femsec/fiz041

    Article  CAS  PubMed  Google Scholar 

  72. Jungblut AD, Vincent WF, Lovejoy C (2012) Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbiol Ecol 82:416–428. https://doi.org/10.1111/j.1574-6941.2012.01418.x

    Article  CAS  PubMed  Google Scholar 

  73. Pan Y, Yang J, McManus GB, Lin S, Zhang W (2020) Insights into protist diversity and biogeography in intertidal sediments sampled across a range of spatial scales. Limnol Oceanogr 65:1103–1115. https://doi.org/10.1002/lno.11375

    Article  Google Scholar 

  74. Foissner W, Agatha S, Berger H (2002) Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha Region and the Namib Desert

  75. Karsten U, Holzinger A (2014) Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodivers Conserv 23:1845–1858. https://doi.org/10.1007/s10531-014-0653-2

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jia JM, Chen QW, Ren HD, Lu RJ, He H, Gu PW (2022) Phytoplankton composition and their related factors in five different lakes in China: implications for lake management. Int J Environ Res Public Health 19:3135. https://doi.org/10.3390/ijerph19053135

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ning Y, Zhou X, Yan Z, Zhang S, Chen L, Wan G (2020) Response of soil ciliates community to ecological restoration after the implementation of returning grazing to grasslands project: a case study of Maqu county, Gansu province. Acta Ecol Sin 40:2386–2395. https://doi.org/10.5846/stxb201901020017

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China [32161123004 and 42177101] and the Ministry of Science and Technology of China [2022YFE0114000].  

Author information

Authors and Affiliations

Authors

Contributions

WK conceived this study and JZ performed the data analysis and created the figures. JZ and WK wrote the manuscript with extensive discussions from the rest of authors. All authors contributed to the revisions with the approval of the final manuscript.

Corresponding author

Correspondence to Weidong Kong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1570 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Fan, D., Guo, W. et al. Precipitation Drives Soil Protist Diversity and Community Structure in Dry Grasslands. Microb Ecol 86, 2293–2304 (2023). https://doi.org/10.1007/s00248-023-02235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02235-5

Keywords

Navigation