Skip to main content

Advertisement

Log in

Structure and Functional Properties of Bacterial Communities in Surface Sediments of the Recently Declared Nutrient-Saturated Lake Villarrica in Southern Chile

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Lake Villarrica, one of Chile’s main freshwater water bodies, was recently declared a nutrient-saturated lake due to increased phosphorus (P) and nitrogen (N) levels. Although a decontamination plan based on environmental parameters is being established, it does not consider microbial parameters. Here, we conducted high-throughput DNA sequencing and quantitative polymerase chain reaction (qPCR) analyses to reveal the structure and functional properties of bacterial communities in surface sediments collected from sites with contrasting anthropogenic pressures in Lake Villarrica. Alpha diversity revealed an elevated bacterial richness and diversity in the more anthropogenized sediments. The phylum Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria dominated the community. The principal coordinate analysis (PCoA) and redundancy analysis (RDA) showed significant differences in bacterial communities of sampling sites. Predicted functional analysis showed that N cycling functions (e.g., nitrification and denitrification) were significant. The microbial co-occurrence networks analysis suggested Chitinophagaceae, Caldilineaceae, Planctomycetaceae, and Phycisphaerae families as keystone taxa. Bacterial functional genes related to P (phoC, phoD, and phoX) and N (nifH and nosZ) cycling were detected in all samples by qPCR. In addition, an RDA related to N and P cycling revealed that physicochemical properties and functional genes were positively correlated with several nitrite-oxidizing, ammonia-oxidizing, and N-fixing bacterial genera. Finally, denitrifying gene (nosZ) was the most significant factor influencing the topological characteristics of co-occurrence networks and bacterial interactions. Our results represent one of a few approaches to elucidate the structure and role of bacterial communities in Chilean lake sediments, which might be helpful in conservation and decontamination plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sterner RW, Keeler B, Polasky S, Poudel R, Rhude K, Rogers M (2020) Ecosystem services of Earth’s largest freshwater lakes. Ecosyst Serv 41:101046. https://doi.org/10.1016/j.ecoser.2019.101046

    Article  Google Scholar 

  2. Dirección General de Aguas (DGA). Cuenca del Rio Toltén. (2004). April 5th, 2022, https://mma.gob.cl/wp-content/uploads/2017/12/Tolten.pdf.

  3. Ortega JC (2019) Análisis y evaluación de medidas de reducción de nutrientes (nitrógeno y fósforo) para incorporar al plan de descontaminación del lago Villarrica. Centro de Gestión y Tecnologías del Agua, Universidad de La Frontera, Chile, p 39 April 5th, 2022, http://www.sustentapucon.cl/wp-content/uploads/2019/11/Informe_Final_25-04-2019-1.pdf

    Google Scholar 

  4. Aranda AC, Rivera-Ruiz D, Rodríguez-López L, Pedreros P, Arumí-Ribera JL, Morales-Salinas L, Fuentes-Jaque G, Urrutia R (2021) Evidence of climate change based on lake surface temperature trends in south central Chile. Remote Sens 13. https://doi.org/10.3390/rs13224535

  5. Bhagowati B, Ahamad KU (2019) A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol Hydrobiol 19(1):155–166. https://doi.org/10.1016/j.ecohyd.2018.03.002

    Article  Google Scholar 

  6. Almanza V, Pedreros P, Laughinghouse HD, Félez J, Parra O, Azócar M, Urrutia R (2019) Association between trophic state, watershed use, and blooms of cyanobacteria in south-central Chile. Limnologica 75:30–41. https://doi.org/10.1016/j.limno.2018.11.004

    Article  CAS  Google Scholar 

  7. Bueno I, Travis D, Gonzalez-Rocha G, Alvarez J, Lima C, Garcia Benitez C, Phelps NBD, Wass B, Johnson TJ, Zhang Q, Ishii S, Singer RS (2019) Antibiotic resistance genes in freshwater trout farms in a watershed in Chile. J Environ Qual 48(5):1462–1471. https://doi.org/10.2134/jeq2018.12.0431

    Article  CAS  PubMed  Google Scholar 

  8. Lozano I, Díaz NF, Muñoz S, Riquelme R (2017) In: Savic S (ed) Antibiotics in Chilean aquaculture: A Review. IntechOpen. https://doi.org/10.5772/intechopen.71780

    Chapter  Google Scholar 

  9. Watts JE, Schreier HJ, Lanska L, Hale MS (2017) The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Mar Drugs 15:158. https://doi.org/10.3390/md15060158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taft RA, Jones C (2001) Sediment sampling guide and methodologies. State of Ohio Environmental Protection Agency April 5th, 2022, https://clu-in.org/download/contaminantfocus/sediments/sampling-guide-ohio-sedman2001.pdf

    Google Scholar 

  11. Yang YG, He ZL, Lin Y, Stoffella PJ (2010) Phosphorus availability in sediments from a tidal river receiving runoff water from agricultural fields. Agric Water Manag 97:1722–1730. https://doi.org/10.1016/j.agwat.2010.06.003

    Article  Google Scholar 

  12. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  13. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  14. Warncke D, Brown J (1998) Potassium and Other Basic Cations. Recommended Chemical Soil Test Procedures for the North Central Region. North Central Regional Research, pp 31–33 April 5th, 2022, https://www.canr.msu.edu/uploads/234/68557/rec_chem_soil_test_proce55c.pdf

    Google Scholar 

  15. Bertsch P, Bloom P (1996) Aluminum. In: Bigham JM (ed) Methods of Soil Analysis, Part 3— Chemical Methods. Soil Science Society of America Book Series, Madison,WI, pp 517–550

    Google Scholar 

  16. Zhang Q, Acuña JJ, Inostroza NG, Duran P, Mora ML, Sadowsky MJ, Jorquera MA (2020) Niche differentiation in the composition, predicted function, and co-occurrence networks in bacterial communities associated with antarctic vascular plants. Front Microbiol 11:1036. https://doi.org/10.3389/fmicb.2020.01036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, Trevor J, Clayton GJB, Johnson TJ, Hunter R, Knights D, Beckman KB (2016) Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 34:942–949. https://doi.org/10.1038/nbt.3601

    Article  CAS  PubMed  Google Scholar 

  18. Al-Ghalith GA, Hillmann B, Ang K, Shields-Cutler R, Knights D (2018) SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control. mSystems 24:e00202. https://doi.org/10.1128/mSystems.00202-17

    Article  Google Scholar 

  19. Wang Z, Zhang Q, Staley C, Gao H, Ishii S, Wei X, Liu J, Cheng J, Hao M, Sadowsky MJ (2019) Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability. Biol Fertil Soils 55:121–134. https://doi.org/10.1007/s00374-018-01336-5

    Article  CAS  Google Scholar 

  20. Al-Ghalith GA, Montassier E, Ward HN, Knights D (2016) NINJA-OPS: Fast accurate marker gene alignment using concatenated ribosomes. PLoS Comput Biol 12:e1004658. https://doi.org/10.1371/journal.pcbi.1004658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) Uchime improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:326–349. https://doi.org/10.2307/1942268

    Article  Google Scholar 

  23. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  24. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491. https://doi.org/10.1093/genetics/131.2.479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277. https://doi.org/10.1126/science.aaf4507

    Article  CAS  PubMed  Google Scholar 

  26. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2020. vegan: Community Ecology Package, R package version 2.5-7.

  27. Ma B, Wang HZ, Dsouza M, Lou J, He Y, Dai ZM, Brookes PC, Xu J, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10:1891–1901. https://doi.org/10.1038/ismej.2015.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo F, Zhong J, Yang Y, Scheuermann RH, Zhou J (2006) Application of random matrix theory to biological networks. Phys Lett A 357:420–423. https://doi.org/10.1016/j.physleta.2006.04.076

    Article  CAS  Google Scholar 

  29. Benjamini Y, Krieger AM, Yekutieli D (2006) Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93:491–507. https://doi.org/10.1093/biomet/93.3.491

    Article  Google Scholar 

  30. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Syst 1695:1–9 April 5th, 2022, https://pdfs.semanticscholar.org/1d27/44b83519657f5f2610698a8ddd177ced4f5c.pdf?_ga=2.102773952.1172527413.1589302647-216860011.1586286922

    Google Scholar 

  31. Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219. https://doi.org/10.3389/fmicb.2014.00219

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media (San Jose, CA) Apeil 5th, 2022, https://gephi.org/publications/gephi-bastian-feb09.pdf

    Google Scholar 

  33. Qiu L, Zhang Q, Zhu H, Reich PB, Banerjee S, van der Heijden MGA, Sadowsky MJ, Ishii S, Jia X, Shao M, Liu B, Jiao H, Li H, Wei X (2021) Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J 15:2474–2489. https://doi.org/10.1038/s41396-021-00913-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shade A, McManus PS, Handelsman J (2013) Unexpected diversity during community succession in the apple flower microbiome. MBio 4:1–12. https://doi.org/10.1128/mBio.00602-12

    Article  Google Scholar 

  35. Fraser TD, Lynch DH, Gaiero J, Khosla K, Dunfield KE (2017) Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Appl Soil Ecol 111:48–56. https://doi.org/10.1016/j.apsoil.2016.11.013

    Article  Google Scholar 

  36. Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci Plant Nutr 54:62–71. https://doi.org/10.1111/j.1747-0765.2007.00210.x

    Article  CAS  Google Scholar 

  37. Sebastian M, Ammerman JW (2009) The alkaline phosphatase phoX is more widely distributed in marine bacteria than the classical phoA. ISME J 3:563–572. https://doi.org/10.1038/ismej.2009.10

    Article  CAS  PubMed  Google Scholar 

  38. Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103. https://doi.org/10.1016/S0923-2508(00)01172-4

    Article  CAS  PubMed  Google Scholar 

  39. Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72(8):5181–5189. https://doi.org/10.1128/AEM.00231-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Whelan JA, Russell NB, Whelan MA (2003) A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods 278:261–269. https://doi.org/10.1016/S0022-1759(03)00223-0

    Article  CAS  PubMed  Google Scholar 

  41. Campos M, Rilling JI, Acuña JJ, Valenzuela T, Larama G, Peña-Cortés F, Ogram A, Jaisi DP, Jorquera MA (2021) Spatiotemporal variations and relationships of phosphorus, phosphomonoesterases, and bacterial communities in sediments from two Chilean rivers. Sci Total Environ 776:145782. https://doi.org/10.1016/j.scitotenv.2021.145782

    Article  CAS  Google Scholar 

  42. Huang W, Chen X, Jiang X, Zheng B (2017) Characterization of sediment bacterial communities in plain lakes with different trophic statuses. MicrobiologyOpen 6:e503. https://doi.org/10.1002/mbo3.503

    Article  CAS  Google Scholar 

  43. Huang W, Chen X, Wang K, Chen J, Zheng B, Jiang X (2019) Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network. Microbiologyopen 8(2):e00644. https://doi.org/10.1002/mbo3.644

    Article  PubMed  Google Scholar 

  44. Long Y, Jiang J, Hu X, Hu J, Ren C, Zhou S (2021) The response of microbial community structure and sediment properties to anthropogenic activities in Caohai wetland sediments. Ecotoxicol Environ Saf 211:111936. https://doi.org/10.1016/j.ecoenv.2021.111936

    Article  CAS  PubMed  Google Scholar 

  45. Wu L, Han C, Zhu G, Zhong W (2019) Responses of active ammonia oxidizers and nitrification activity in eutrophic lake sediments to nitrogen and temperature. Appl Environ Microbiol 85. https://doi.org/10.1128/AEM.00258-19

  46. Zhang H, Huang T, Chen S (2014) Abundance and diversity of bacteria in oxygen minimum drinking water reservoir sediments studied by quantitative PCR and pyrosequencing. Microb Ecol 69:618–629. https://doi.org/10.1007/s00248-014-0539-6

    Article  PubMed  Google Scholar 

  47. Zhang T, Qin M, Wei C, Li D, Lu X, Zhang L (2020) Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. Sci Total Environ 728:138615. https://doi.org/10.1016/j.scitotenv.2020.138615

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Shen T, Cheng Y, Zhao T, Li L, Qi P (2020) Temporal and spatial variations in the bacterial community composition in Lake Bosten, a large, brackish lake in China. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-019-57238-5

    Article  CAS  Google Scholar 

  49. Pandey J, Yadav A (2017) Alternative alert system for Ganga river eutrophication using alkaline phosphatase as a level determinant. Ecol Indic 82:327–343. https://doi.org/10.1016/j.ecolind.2017.06.061

    Article  CAS  Google Scholar 

  50. Avramidis P, Samiotis A, Kalimani E, Papoulis D, Lampropoulou P, Bekiari V (2012) Sediment characteristics and water physicochemical parameters of the Lysimachia Lake, Western Greece. Environ Earth Sci 70(1):383–392. https://doi.org/10.1007/s12665-012-2134-9

    Article  CAS  Google Scholar 

  51. Zhang L, Zhao T, Wang Q, Li L, Shen T, Gao G (2019) Bacterial community composition in aquatic and sediment samples with spatiotemporal dynamics in large, shallow, eutrophic Lake Chaohu, China. J Freshw Ecol 34:575–589. https://doi.org/10.1080/02705060.2019.1635536

    Article  CAS  Google Scholar 

  52. Nimptsch, J., Woelfl, S., Jaramillo, J., Lorca, A., 2020. Revisión de antecedentes de calidad del agua, como apoyo la elaboración de informes de calidad del Ministerio del Medio Ambiente. elaboración de un protocolo de acción para gestión de episodios de bloom algales en el Lago Villarrica. Valdivia. April 25th, 2022, http://catalogador.mma.gob.cl:8080/geonetwork/srv/spa/resources.get?uuid=bac6e00d-41d8-4720-86f8-a72def2e5cbb&fname=Informe%20Final%20Blooms%20Villarrica%2008042020%20(1).pdf&access=public.

  53. Gopal V, Achyuthan H, Shah RA, Jayaprakash M (2021) Physicochemical characteristics and spatial distribution patternof the Yercaud Lake surface sediments, South India. Geol J 56:2451–2463. https://doi.org/10.1002/gj.4023

    Article  CAS  Google Scholar 

  54. Teeter AM, Johnson BH, Berger C, Stelling G, Scheffner NW, Garcia MH, Parchure TM (2001) Hydrodynamic and sediment transport modeling with emphasis on shallow-water, vegetated areas (lakes, reservoirs, estuaries and lagoons). Hydrobiologia 444:1–23. https://doi.org/10.1023/A:1017524430610

    Article  Google Scholar 

  55. Jin K-R, Sun D (2007) Sediment resuspension and hydrodynamics in Lake Okeechobee during the late summer. J Eng Mech 133:899–910. https://doi.org/10.1061/(asce)0733-9399(2007)133:8(899)

    Article  Google Scholar 

  56. Amorim LF, Martins JRS, Nogueira FF, Silva FP, Duarte BPS, Magalhães AAB, Vinçon-Leite B (2021) Hydrodynamic and ecological 3D modeling in tropical lakes. SN Appl Sci 3:1–14. https://doi.org/10.1007/s42452-021-04272-6

    Article  Google Scholar 

  57. Bai Y, Shi Q, Wen D, Li Z, Jefferson WA, Feng C, Tang X (2012) Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China. PLoS One 7(5):e37796. https://doi.org/10.1371/journal.pone.0037796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ezzedine J, Desdevises Y, Jacquet S (2020) Exploring archaeal and bacterial diversity and co-occurrence in Lake Geneva. Adv Oceanogr and Limnol https://hal.archives-ouvertes.fr/hal-03025869

  59. Chan YF, Chiang PW, Tandon K, Rogozin D, Degermendzhi A, Zykov V, Tang SL (2021) Spatiotemporal changes in the bacterial community of the meromictic Lake Uchum, Siberia. Microb Ecol 81:357–369. https://doi.org/10.1007/s00248-020-01592-9

    Article  CAS  PubMed  Google Scholar 

  60. Campos M, Acuña JJ, Rilling JI, Gonzalez-Gonzalez S, Pena-Cortes F, Jaisi DP, Hollenback A, Ogram A, Bai J, Zhang L, Xiao R, Jorquera MA (2022) Spatiotemporal distributions and relationships of phosphorus content, phosphomonoesterase activity, and bacterial phosphomonoesterase genes in sediments from a eutrophic brackish water lake in Chile. J Environ Manage 320:115906. https://doi.org/10.1016/j.jenvman.2022.115906

    Article  CAS  PubMed  Google Scholar 

  61. Zhu W, Liu J, Li Q, Gu P, Gu X, Wu L, Gao Y, Shan J, Zheng Z, Zhang W (2022) Effects of nutrient levels on microbial diversity in sediments of a eutrophic shallow lake. Front Ecol Evol 10:1–8. https://doi.org/10.3389/fevo.2022.909983

    Article  Google Scholar 

  62. Wang Y, Guo M, Li X, Liu G, Hua Y, Zhao J, Huguet A, Li S (2022) Shifts in microbial communities in shallow lakes depending on trophic states: Feasibility as an evaluation index for eutrophication. Ecol Indic 136:108691. https://doi.org/10.1016/j.ecolind.2022.108691

    Article  Google Scholar 

  63. Emerson JB, Varner RK, Wik M, Parks DH, Neumann RB, Johnson JE, Singleton CM, Woodcroft BJ, Tollerson II R, Owusu-Dommey A, Binder M, Freitas NL, Crill PM, Saleska SR, Tyson GW, Rich VI (2021) Diverse sediment microbiota shape methane emission temperature sensitivity in Arctic lakes. Nat Commun 12:5815. https://doi.org/10.1038/s41467-021-25983-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu Y, Ren Z, Qu X, Zhang M, Yu Y, Zhang Y, Peng W (2020) Microbial community structure and functional properties in permanently and seasonally flooded areas in Poyang Lake. Sci Rep 10:4819. https://doi.org/10.1038/s41598-020-61569-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rissanen AJ, Peura S, Mpamah PA, Taipale S, Tiirola M, Biasi C, Mäki A, Nykänen H (2019) Vertical stratification of bacteria and archaea in sediments of a small boreal humic lake. FEMS Microbiol Lett 366(5):fnz044. https://doi.org/10.1093/femsle/fnz044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Paruch L, Paruch AM, Blankenberg AB, Bechmann M (2015) Application of host-specific genetic markers for microbial source tracking of faecal water contamination in an agricultural catchment. Acta Agric Scand Sect B—Soil Plant Sci 65:164–172. https://doi.org/10.1080/09064710.2014.941392

    Article  Google Scholar 

  67. Ji B, Liang J, Ma Y, Zhu L, Liu Y (2019) Bacterial community and eutrophic index analysis of the East Lake. Environ Pollut 252:682–688. https://doi.org/10.1016/j.envpol.2019.05.138

    Article  CAS  PubMed  Google Scholar 

  68. Mahler BJ, Personné JC, Lods GF, Drogue C (2000) Transport of free and particulate-associated bacteria in karst. J Hydrol 238:179–193. https://doi.org/10.1016/S0022-1694(00)00324-3

    Article  Google Scholar 

  69. Tang X, Gao G, Chao J, Wang X, Zhu G, Qin B (2010) Dynamics of organic-aggregate-associated bacterial communities and related environmental factors in Lake Taihu, a large eutrophic shallow lake in China. Limnol Oceanogr 55:469–480. https://doi.org/10.4319/lo.2009.55.2.0469

    Article  CAS  Google Scholar 

  70. Han X, Schubert CJ, Fiskal A, Dubois N, Lever MA (2020) Eutrophication as a driver of microbial community structure in lake sediments. Environ Microbiol 22(8):3446–3462. https://doi.org/10.1111/1462-2920.15115

    Article  CAS  PubMed  Google Scholar 

  71. Ren Z, Qu X, Peng W, Yu Y, Zhang M (2019) Functional properties of bacterial communities in water and sediment of the eutrophic river-lake system of Poyang Lake, China. PeerJ 7:e7318. https://doi.org/10.7717/peerj.7318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Balci N, Vardar-Yel N, Yelboga E, Karaguler NG (2012) Bacterial community composition of sediments from artificial Lake Maslak, Istanbul, Turkey. Environ Monit Assess 184:5641–5650. https://doi.org/10.1007/s10661-011-2368-0

    Article  CAS  PubMed  Google Scholar 

  73. Custodio M, Espinoza C, Peñaloza R, Peralta-Ortiz T, Sánchez-Suárez H, Ordinola-Zapata A, Vieyra-Peña E (2022) Microbial diversity in intensively farmed lake sediment contaminated by heavy metals and identification of microbial taxa bioindicators of environmental quality. Sci Rep 12:80. https://doi.org/10.1038/s41598-021-03949-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spring S, Bunk B, Spröer C, Rohde M, Klenk HP (2018) Genome biology of a novel lineage of planctomycetes widespread in anoxic aquatic environments. Environ Microbiol 20(7):2438–2455. https://doi.org/10.1111/1462-2920.14253

    Article  CAS  PubMed  Google Scholar 

  75. Wiegand S, Jogler M, Jogler C (2018) On the maverick Planctomycetes. FEMS Microbiol Rev 42(2018):739–760. https://doi.org/10.1093/femsre/fuy029

    Article  CAS  PubMed  Google Scholar 

  76. Devarajan N, Laffite A, Graham ND, Meijer M, Prabakar K, Mubedi JI, Elongo V, Mpiana PT, Ibelings BW, Wildi W, Poté J (2015) Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environ Sci Technol 49(11):6528–6537. https://doi.org/10.1021/acs.est.5b01031

    Article  CAS  PubMed  Google Scholar 

  77. Martins G, Terada A, Ribeiro DC, Corral AM, Brito AG, Smets BF, Nogueira R (2011) Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles. FEMS Microb Ecol 77(3):666–679. https://doi.org/10.1111/j.1574-6941.2011.01145.x

    Article  CAS  Google Scholar 

  78. Morrison E, Newman S, Bae HS, He Z, Zhou J, Reddy KR, Ogram A (2016) Microbial genetic and enzymatic responses to an anthropogenic phosphorus gradient within a subtropical peatland. Geoderma 268:119–127. https://doi.org/10.1016/j.geoderma.2016.01.008

    Article  CAS  Google Scholar 

  79. Wan W, Zhang Y, Cheng G, Li X, Qin Y, He D (2020) Dredging mitigates cyanobacterial bloom in eutrophic Lake Nanhu: Shifts in associations between the bacterioplankton community and sediment biogeochemistry. Environ Res 188:109799. https://doi.org/10.1016/j.envres.2020.109799

    Article  CAS  PubMed  Google Scholar 

  80. Krausfeldt LE, Tang X, van de Kamp J, Gao G, Bodrossy L, Boyer GL, Wilhelm SW (2017) Spatial and temporal variability in the nitrogen cyclers of hypereutrophic Lake Taihu. FEMS Microbiol Ecol 93:1–11. https://doi.org/10.1093/femsec/fix024

    Article  CAS  Google Scholar 

  81. Highton MP, Roosa S, Crawshaw J, Schallenberg M, Morales SE (2016) Physical factors correlate to microbial community structure and nitrogen cycling gene abundance in a nitrate fed eutrophic lagoon. Front Microbiol 7:1691. https://doi.org/10.3389/fmicb.2016.01691

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fan YY, Li BB, Yang ZC, Cheng YY, Liu DF, Yu HQ (2019) Mediation of functional gene and bacterial community profiles in the sediments of eutrophic Chaohu Lake by total nitrogen and season. Environ Pollut 250:233–240. https://doi.org/10.1016/j.envpol.2019.04.028

    Article  CAS  PubMed  Google Scholar 

  83. Fan X, Ding S, Gong M, Chen M, Gao SS, Jin Z, Tsang DCW (2018) Different influences of bacterial communities on Fe (III) reduction and phosphorus availability in sediments of the cyanobacteria-and macrophyte-dominated zones. Front Microbiol 9:1–14. https://doi.org/10.3389/fmicb.2018.02636

    Article  Google Scholar 

  84. Beattie RE, Bandla A, Swarup S, Hristova KR (2020) Freshwater sediment microbial communities are not resilient to disturbance from agricultural land runoff. Front Microbiol 11:1–14. https://doi.org/10.3389/fmicb.2020.539921

    Article  Google Scholar 

  85. Crowe SA, Treusch AH, Forth M, Li J, Magen C, Canfield DE, Thamdrup B, Katsev S (2017) Novel anammox bacteria and nitrogen loss from Lake Superior. Sci Rep 7:13757. https://doi.org/10.1038/s41598-017-12270-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hamersley MR, Woebken D, Boehrer B, Schultze M, Lavik G, Kuypers MMM (2009) Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany). Syst Appl Microbiol 32(8):571–582. https://doi.org/10.1016/j.syapm.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  87. Lipsewers YA, Hopmans EC, Meysman FJR, Damsté JSS, Villanueva L (2016) Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline lake Grevelingen. Front Microbiol 7:1661. https://doi.org/10.3389/fmicb.2016.01661

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to the Scientific and Technological Bioresource Nucleus (BIOREN) for the availability of Illumina MiSeq equipment (Fondequip, code EQM150126). The authors would also like to thank (1) “Dirección General del Territorio Marítimo y de Marina Mercante (DIRECTEMAR)” of Pucón city, (2) Biol. Bárbara Cisternas from ‘Gobernación Marítima’ of Valdivia city, and (3) Eng. Pablo Etcharren from Seremi del Medio Ambiente (Región de La Araucanía) of the Ministerio de Medio Ambiente de Chile provided support for selecting sampling sites and collecting sediment samples. Finally, the authors would like to acknowledge the Editor and two anonymous reviewers for their criticism reading and constructive commentaries, which improved the quality of our manuscript.

Funding

This study was funded by Chile-China Joint Projects on Water Resources Management from ANID and NSFC (NSFC190012 in Chile and Grant No. 51961125201 in China) (to M.A.C., J.J.A., E.C., C.R., J.B., L.Z., R.X. and M.A.J.), by International Cooperation Project Chile-USA from ANID (code REDES190079) (to, M.A.C., J.J.A., J.I.R., A.H., D.P.J., A.O. and M.A.J.), by FONDECYT project no. 1201386 and 1221228 (to J.J.A. and M.A.J.), by NSFC (42077386) (Q.Z.), and by Science and Technology Research Partnership for Sustainable Development (SATREPS, Japan) (code JPMJSA1705) (to M.A.C., J.J.A, J.I.R., T.R. and M.A.J.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by M.A.C., Q.Z., J.J.A., J.I.R., T.R., E.C., C.R., and J.H. The first draft of the manuscript was written by M.A.C., Q.Z., and M.A.J. All authors commented, revised, and edited on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Milko A. Jorquera.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, M.A., Zhang, Q., Acuña, J.J. et al. Structure and Functional Properties of Bacterial Communities in Surface Sediments of the Recently Declared Nutrient-Saturated Lake Villarrica in Southern Chile. Microb Ecol 86, 1513–1533 (2023). https://doi.org/10.1007/s00248-023-02173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02173-2

Keywords

Navigation