Skip to main content
Log in

Serious Risk of Tigecycline Resistance in Escherichia coli Isolated from Swine Manure

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The emergence of the plasmid-mediated tigecycline resistance gene tetX family in pig farms has attracted worldwide attention. The use of tetracycline antibiotics in pig farms has a facilitating effect on the prevalence of the tetX family, but the relationship among its presence, expression, and resistance phenotype in resistant bacteria is unknown. In this study, the presence and expression characteristics of tetracycline resistance genes (TRGs) in 89 strains of doxycycline-resistant E. coli (DRE) isolated from pig manure samples from 20 pig farms under low concentrations of doxycycline stress (2 μg/mL) were analyzed. The detection rate of tetO was 96.63%, which is higher than those of other TRGs, such as tetA (94.38%), tetX (76.40%), tetB (73.03%), and tet(X4) (69.66%). At least three TRG types were present in DRE strains, which thus showed extensive resistance to tetracycline antibiotics, and 37% of these strains were resistant to tigecycline. In the presence of a low concentration of doxycycline, tetA played an important role, and the expression and existence ratio of TRGs indicated low expression of TRGs. Furthermore, the doxycycline resistance of DRE was jointly determined by the total absolute abundance of TRGs, and the absolute abundance of tetX and tet(X4) was significantly positively associated with tigecycline resistance in DRE (P < 0.05). Overall, DRE isolated from swine manure is an important reservoir of the tetX family, which suggests that DRE in swine manure has a high risk of tigecycline resistance, poses a potential threat to human health, and should be of public concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pruden A, Pei RT, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40:7445–7450. https://doi.org/10.1021/es060413l

    Article  CAS  PubMed  Google Scholar 

  2. Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13:589–594. https://doi.org/10.1016/j.mib.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  3. Matthiessen L, Bergstrom R, Dustdar S, Meulien P, Draghia-Akli R (2016) Increased momentum in antimicrobial resistance research. Lancet 388:865. https://doi.org/10.1016/S0140-6736(16)31425-8

    Article  PubMed  Google Scholar 

  4. Liang C, Wei D, Yan W, Zhang S, Shi J, Liu L (2021) Fates of intracellular and extracellular antibiotic resistance genes during the cattle farm wastewater treatment process. Bioresour Technol 344:126272. https://doi.org/10.1016/j.biortech.2021.126272

  5. Tiseo K, Huber L, Gilbert M, Robinson TP, Van Boeckel TP (2020) Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics-Basel 9. ARTN 918. https://doi.org/10.3390/antibiotics9120918

  6. Cheng DL, Ngo HH, Guo WS, Liu YW, Zhou JL, Chang SW, Nguyen DD, Bui XT, Zhang XB (2018) Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci Total Environ 621:1664–1682. https://doi.org/10.1016/j.scitotenv.2017.10.059

    Article  CAS  PubMed  Google Scholar 

  7. Ren CY, Wu EL, Hartmann EM, Zhao HP (2021) Biological mitigation of antibiotic resistance gene dissemination by antioxidant-producing microorganisms in activated sludge systems. Environ Sci Technol 55(23):15831–15842. https://doi.org/10.1021/acs.est.1c04641

  8. Hultman J, Tamminen M, Parnanen K, Cairns J, Karkman A, Virta M (2018) Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent. Fems Microbiology Ecology 94. ARTN fiy038. https://doi.org/10.1093/femsec/fiy038

  9. Ma X, Yang ZR, Xu TT, Qian MQ, Jiang XM, Zhan XA, Han XY (2021) Chlortetracycline alters microbiota of gut or faeces in pigs and leads to accumulation and migration of antibiotic resistance genes. Sci Total Environ 796. ARTN 148976. https://doi.org/10.1016/j.scitotenv.2021.148976

  10. Du P, Liu D, Song H, Zhang P, Li R, Fu Y, Liu X, Jia J, Li X, Fanning S, Wang Y, Bai L, Zeng H (2020) Novel IS26-mediated hybrid plasmid harbouring tet(X4) in Escherichia coli. J Glob Antimicrob Resist 21:162–168. https://doi.org/10.1016/j.jgar.2020.03.018

    Article  PubMed  Google Scholar 

  11. Du X, He F, Shi Q, Zhao F, Xu J, Fu Y, Yu Y (2018) The rapid emergence of tigecycline resistance in bla(KPC-2) Harboring klebsiella pneumoniae, as mediated in vivo by mutation in tetA during tigecycline treatment. Front Microbiol 9:648. https://doi.org/10.3389/fmicb.2018.00648

    Article  PubMed  PubMed Central  Google Scholar 

  12. He T, Wang R, Liu DJ, Walsh TR, Zhang R, Lv Y, Ke YB, Ji QJ, Wei RC, Liu ZH, Shen YB, Wang G, Sun LC, Lei L, Lv ZQ, Li Y, Pang MD, Wang LY, Sun QL, Fu YL, Song HW, Hao YX, Shen ZQ, Wang SL, Chen GX, Wu CM, Shen JZ, Wang Y (2019) Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol 4:1450–1456. https://doi.org/10.1038/s41564-019-0445-2

    Article  CAS  PubMed  Google Scholar 

  13. Cui Z-H, Ni W-N, Tang T, He B, Zhong Z-X, Fang L-X, Chen L, Chen C, Cui C-Y, Liu Y-H, Liao X-P, Sun J (2020) Rapid detection of plasmid-mediated high-level tigecycline resistance in Escherichia coli and Acinetobacter spp. J Antimicrob Chemoth 75:1479–1483. https://doi.org/10.1093/jac/dkaa029%JJournalofAntimicrobialChemotherapy

    Article  CAS  Google Scholar 

  14. Huang J, Mi J, Yan Q, Wen X, Zhou S, Wang Y, Ma B, Zou Y, Liao X, Wu Y (2021) Animal manures application increases the abundances of antibiotic resistance genes in soil-lettuce system associated with shared bacterial distributions. Sci Total Environ 787:147667. https://doi.org/10.1016/j.scitotenv.2021.147667

    Article  CAS  PubMed  Google Scholar 

  15. Van den Meersche T, Rasschaert G, Haesebrouck F, Van Coillie E, Herman L, Van Weyenberg S, Daeseleire E, Heyndrickx M (2019) Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. Ecotoxicol Environ Saf 175:29–38. https://doi.org/10.1016/j.ecoenv.2019.01.127

    Article  CAS  PubMed  Google Scholar 

  16. Xu S, Qasim MZ, Zhang T, Wang R, Li C, Ge S (2021) Diversity, abundance and expression of the antibiotic resistance genes in a Chinese landfill: effect of deposit age. J Hazard Mater 417:126027. https://doi.org/10.1016/j.jhazmat.2021.126027

    Article  CAS  PubMed  Google Scholar 

  17. Yu Y, Cui CY, Kuang X, Chen C, Wang MG, Liao XP, Sun J, Liu YH (2021) Prevalence of tet(X4) in Escherichia coli from duck farms in Southeast China. Front Microbiol 12:716393. https://doi.org/10.3389/fmicb.2021.716393

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang S, Abbas M, Rehman MU, Huang Y, Zhou R, Gong S, Yang H, Chen S, Wang M, Cheng A (2020) Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health. Environ Pollut 266:115260. https://doi.org/10.1016/j.envpol.2020.115260

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, Mi J, Liang J, Liao X, Ma B, Zou Y, Wang Y, Liang J, Wu Y (2019) Changes in the carbon metabolism of Escherichia coli during the evolution of doxycycline resistance. Front Microbiol 10:2506. https://doi.org/10.3389/fmicb.2019.02506

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kragh KN, Alhede M, Kvich L, Bjarnsholt T (2019) Into the well—a close look at the complex structures of a microtiter biofilm and the crystal violet assay. Biofilm 1:100006. https://doi.org/10.1016/j.bioflm.2019.100006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fu Y, Chen Y, Liu D, Yang D, Liu Z, Wang Y, Wang J, Wang X, Xu X, Li X, He J, Jiang J, Zhai W, Huang L, He T, Xia X, Cai C, Wang Y, Jiang H (2021) Abundance of tigecycline resistance genes and association with antibiotic residues in Chinese livestock farms. J Hazard Mater 409:124921. https://doi.org/10.1016/j.jhazmat.2020.124921

    Article  CAS  PubMed  Google Scholar 

  22. Yan Q, Li X, Ma B, Zou Y, Wang Y, Liao X, Liang J, Mi J, Wu Y (2018) Different concentrations of doxycycline in swine manure affect the microbiome and degradation of doxycycline residue in soil. Front Microbiol 9:3129. https://doi.org/10.3389/fmicb.2018.03129

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang Y, Wu R, Hu J, Xing S, Huang C, Mi J, Liao X (2020) Dominant denitrifying bacteria are important hosts of antibiotic resistance genes in pig farm anoxic-oxic wastewater treatment processes. Environ Int 143:105897. https://doi.org/10.1016/j.envint.2020.105897

    Article  CAS  PubMed  Google Scholar 

  24. Han BJ, Yang FX, Tian XL, Mu MR, Zhang KQ (2021) Tracking antibiotic resistance gene transfer at all seasons from swine waste to receiving environments. Ecotox Environ Safe 219. ARTN 112335. https://doi.org/10.1016/j.ecoenv.2021.112335

  25. Papadopoulos D, Petridou E, Papageorgiou K, Giantsis IA, Delis G, Economou V, Frydas I, Papadopoulos G, Hatzistylianou M, Kritas SK (2021) Phenotypic and molecular patterns of resistance among Campylobacter coli and Campylobacter jejuni isolates, from pig farms. Animals-Basel 11. ARTN 2394. https://doi.org/10.3390/ani11082394

  26. Wen X, Mi J, Wang Y, Ma B, Zou Y, Liao X, Liang JB, Wu Y (2019) Occurrence and contamination profiles of antibiotic resistance genes from swine manure to receiving environments in Guangdong Province southern China. Ecotoxicol Environ Saf 173:96–102. https://doi.org/10.1016/j.ecoenv.2019.02.023

    Article  CAS  PubMed  Google Scholar 

  27. Sun J, Chen C, Cui C-Y, Zhang Y, Liu X, Cui Z-H, Ma X-Y, Feng Y, Fang L-X, Lian X-L, Zhang R-M, Tang Y-Z, Zhang K-X, Liu H-M, Zhuang Z-H, Zhou S-D, Lv J-N, Du H, Huang B, Yu F-Y, Mathema B, Kreiswirth BN, Liao X-P, Chen L, Liu Y-H (2019) Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat Microbiol 4:1457–1464. https://doi.org/10.1038/s41564-019-0496-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Lu MJ, Wang ZY, Jiang Y, Wu H, Pan ZM, Jiao XA (2022) Tigecycline-resistant Escherichia coli ST761 carrying tet(X4) in a pig farm, China. Front Microbiol 13:967313. https://doi.org/10.3389/fmicb.2022.967313

  29. Li R, Peng K, Li Y, Liu Y, Wang Z (2020) Exploring tet (X)-bearing tigecycline-resistant bacteria of swine farming environments. Sci Total Environ 733:139306. https://doi.org/10.1016/j.scitotenv.2020.139306

  30. Xu LY, Zhang H, Xiong P, Zhu QQ, Liao CY, Jiang GB (2021) Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci Total Environ 753. ARTN 141975. https://doi.org/10.1016/j.scitotenv.2020.141975

  31. Gochez D, Raicek M, Ferreira JP, Jeannin M, Moulin G, Erlacher-Vindel E (2019) OIE annual report on antimicrobial agents intended for use in animals: methods used. Front Vet Sci 6. ARTN 317. https://doi.org/10.3389/fvets.2019.00317

  32. Das T, Rana EA, Dutta A, Bostami MB, Rahman M, Deb P, Nath C, Barua H, Biswas PK (2021) Antimicrobial resistance profiling and burden of resistance genes in zoonotic Salmonella isolated from broiler chicken. Vet Med Sci 8(1):237–244. https://doi.org/10.1002/vms3.648

  33. De Lucia A, Card RM, Duggett N, Smith RP, Davies R, Cawthraw SA, Anjum MF, Rambaldi M, Ostanello F, Martelli F (2021) Reduction in antimicrobial resistance prevalence in Escherichia coli from a pig farm following withdrawal of group antimicrobial treatment. Vet Microbiol 258. ARTN 109125. https://doi.org/10.1016/j.vetmic.2021.109125

  34. Ma J, Zhou W, Wu J, Liu X, Lin J, Ji X, Lin H, Wang J, Jiang H, Zhou Q, Zhao G, Yang H, Tang B (2022) Large-scale studies on antimicrobial resistance and molecular characterization of Escherichia coli from food animals in developed areas of Eastern China. Microbiol Spectr 10:e0201522. https://doi.org/10.1128/spectrum.02015-22

    Article  CAS  PubMed  Google Scholar 

  35. Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782. https://doi.org/10.1021/acs.est.5b00729

    Article  CAS  PubMed  Google Scholar 

  36. Otto SB, Martin M, Schafer D, Hartmann R, Drescher K, Brix S, Dragos A, Kovacs AT (2020) Privatization of biofilm matrix in structurally heterogeneous biofilms. Msystems 5. ARTN e00425-20. https://doi.org/10.1128/mSystems.00425-20

  37. Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043. https://doi.org/10.1111/j.1462-5822.2009.01323.x

    Article  CAS  PubMed  Google Scholar 

  38. Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113. https://doi.org/10.1078/1438-4221-00196

    Article  CAS  PubMed  Google Scholar 

  39. Cai W, Tang F, Jiang L, Li R, Wang Z, Liu Y (2021) Histone-like nucleoid structuring protein modulates the fitness of tet(X4)-bearing IncX1 plasmids in gram-negative bacteria. Front Microbiol 12:763288. https://doi.org/10.3389/fmicb.2021.763288

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tang F, Cai W, Jiang L, Wang Z, Liu Y (2022) Large-scale analysis of fitness cost of tet(X4)-positive plasmids in Escherichia coli. Front Cell Infect Microbiol 12:798802. https://doi.org/10.3389/fcimb.2022.798802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhong C-Y, Cheng A-C, Wang M-S, Zhu D-K, Luo Q-H, Chen S, Zhang S-H, Chen X-Y (2013) Quantitative real-time PCR study of the expression and regulation of the tetracycline resistance gene inRiemerella anatipestifer. Poult Sci 92:1552–1559. https://doi.org/10.3382/ps.2012-02672

    Article  CAS  PubMed  Google Scholar 

  42. Bertram R, Neumann B, Schuster CF (2022) Status quo of tet regulation in bacteria. Microb Biotechnol 15:1101–1119. https://doi.org/10.1111/1751-7915.13926

    Article  CAS  PubMed  Google Scholar 

  43. Ammor MS, Gueimonde M, Danielsen M, Zagorec M, van Hoek AH, de Los Reyes-Gavilan CG, Mayo B, Margolles A (2008) Two different tetracycline resistance mechanisms, plasmid-carried tet(L) and chromosomally located transposon-associated tet(M), coexist in Lactobacillus sakei Rits 9. Appl Environ Microbiol 74:1394–1401. https://doi.org/10.1128/AEM.01463-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li RC, Lu XY, Peng K, Liu ZY, Li Y, Liu Y, Xiao X, Wang ZQ (2020) Deciphering the structural diversity and classification of the mobile tigecycline resistance gene tet(X)-bearing plasmidome among bacteria. Msystems 5. ARTN e00134-20. https://doi.org/10.1128/mSystems.00134-20

  45. Zhai W, Tian Y, Lu M, Zhang M, Song H, Fu Y, Ma T, Sun C, Bai L, Wang Y, Liu D, Zhang Y, Wang H (2022) Presence of mobile tigecycline resistance gene tet(X4) in Clinical Klebsiella pneumoniae. Microbiol Spectr 10:e01081-01021. https://doi.org/10.1128/spectrum.01081-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang P, Mao DQ, Gao HH, Zheng LY, Chen ZY, Gao YT, Duan YT, Guo JH, Luo Y, Ren HQ (2021) Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment. Isme J 16(5):1284–1293. https://doi.org/10.1038/s41396-021-01171-x

  47. Bottery MJ, Wood AJ, Brockhurst MA (2017) Adaptive modulation of antibiotic resistance through intragenomic coevolution. Nat Ecol Evol 1:1364–1369. https://doi.org/10.1038/s41559-017-0242-3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eckert B, Beck CF (1989) Overproduction of transposon Tn10-encoded tetracycline resistance protein results in cell death and loss of membrane potential. J Bacteriol 171:3557–3559. https://doi.org/10.1128/jb.171.6.3557-3559.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Møller TSB, Overgaard M, Nielsen SS, Bortolaia V, Sommer MOA, Guardabassi L, Olsen JE (2016) Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiol 16:39. https://doi.org/10.1186/s12866-016-0649-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roberts MC (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24. https://doi.org/10.1111/j.1574-6976.1996.tb00251.x

    Article  CAS  PubMed  Google Scholar 

  51. Cheng P, Yang Y, Cao S, Liu H, Li X, Sun J, Li F, Ishfaq M, Zhang X (2021) Prevalence and characteristic of swine-origin mcr-1-positive Escherichia coli in Northeastern China 12:712707. https://doi.org/10.3389/fmicb.2021.712707

  52. Fatoba DO, Amoako DG, Abia ALK, Essack SY (2022) Transmission of antibiotic-resistant Escherichia coli from Chicken litter to agricultural soil. Front Env Sci-Switz 9. ARTN 751732. https://doi.org/10.3389/fenvs.2021.751732

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 32172781, 31872401), the Laboratory of Lingnan Modern Agriculture Project (grant no. NZ2021027), the Project of Swine Innovation Team in Guangdong Modern Agricultural Research System (grant no. 2022KJ126), the Start-up Research Project of Maoming Laboratory (grant no. 2021TDQD002), the Science and Technology Program of Guangdong Province, China (grant no. 2020B1212060060), and the Research and Development Project of Shenzhen Kingkey Smart Agriculture Times Co., Ltd. (grant no. TLJXN-FWJS20200615001).

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation, conceptualization, and visualization: Tao Chen; methodology: Minxing Zhao, Xiaoyue Tang; formal analysis and investigation: Wenqiang Wang, Miao Zhang, Jing Tang, Wei Wang, Wenxiao Wei; resources: Baohua Ma, Yongde Zou, Na Zhang; supervision: Jiandui Mi, Yan Wang, Xindi Liao; project administration and funding acquisition: Yinbao Wu.

Corresponding author

Correspondence to Yinbao Wu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zhao, M., Tang, X. et al. Serious Risk of Tigecycline Resistance in Escherichia coli Isolated from Swine Manure. Microb Ecol 86, 947–958 (2023). https://doi.org/10.1007/s00248-022-02133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02133-2

Keywords

Navigation