1 Introduction

It has been proved that intuitionistic first order arithmetic \(\mathbf {HA}\) is closed under the independence of premiss rule (\(\mathrm {IPR}\))

$$\begin{aligned} \vdash A\rightarrow \exists x B \Longrightarrow \;\vdash \exists x(A\rightarrow B),\; (x\text { not free in }A, A\text { Rasiowa}{-}\text {Harrop}), \end{aligned}$$

for sentence A using, for example, Kleene or Aczel slash relation (cf. [9, Ch.3.5.16]). Troelstra [7, 3.7] showed that \(\mathbf {HA}^\omega \) is closed under the following \(\mathrm {IPR}^\omega \) in \(\mathscr {L}(\mathbf {HA}^\omega )\)

$$\begin{aligned} \vdash A\rightarrow \exists x^\sigma B \Longrightarrow \;\vdash \exists x^\sigma (A\rightarrow B),\; (x\text { not free in }A, A \text { Rasiowa}{-}\text {Harrop}), \end{aligned}$$

for negative A using the modified realizability interpretation. In [2], we gave a class \(\mathscr {S}\) of schemata such that \(\mathbf {HA}+\varLambda \) and \(\mathbf {HA}^\omega +\varLambda \) are closed under \(\mathrm {IPR}\) and \(\mathrm {IPR}^\omega \) whenever \(\varLambda \) is a subset of \(\mathscr {S}\). If an extension \(\mathbf{T}\) of \(\mathbf {HA}\) or \(\mathbf {HA}^\omega \) derives the independence of premiss axiom

\(\mathrm {IP}^{(\omega )}\):

\((A{\rightarrow }\exists x^{(\sigma )} B)\rightarrow \exists x^{(\sigma )}(A{\rightarrow }B)\), (x is not free in A, A Rasiowa–Harrop),

then T is closed under \(\mathrm {IPR}^{(\omega )}\). Therefore a natural question arises: What theory \(\mathbf{T}\) is closed under \(\mathrm {IPR}^{(\omega )}\), but does not derive \(\mathrm {IP}^{(\omega )}?\)

In this paper, we give several examples of extensions of \(\mathbf {HA}\) and \(\mathbf {HA}^\omega \) which are closed under \(\mathrm {IPR}^{(\omega )}\), but do not derive \(\mathrm {IP}^{(\omega )}\). In Sect. 2, we give a general relationship among the law of excluded middle (\(\mathrm {LEM}\)), the double negation elimination (\(\mathrm {DNE}\)) and \(\mathrm {IPR}\):

if \(\mathbf{T}\not \vdash \varGamma \text {-}\mathrm {LEM}\) and \(\mathbf{T}\vdash \varGamma \text {-}\mathrm {DNE}\), then \(\mathbf{T}\) is not closed under \(\mathrm {IPR}\), and hence, in particular, \(\mathbf{T}\) does not derive \(\mathrm {IP}\),

for a class \(\varGamma \) of formulae and a theory \(\mathbf{T}\) with a certain property. Using the relationship, we show that \(\mathbf {HA}+\varSigma _{n}\text {-}\mathrm {LEM}\) is closed under \(\mathrm {IPR}\) but does not derive \(\mathrm {IP}\). In Sect. 3, we prove that several extensions of \(\mathbf {HA}^\omega \) with non-classical axiom schemata in \(\mathscr {S}\) are closed under \(\mathrm {IPR}^{\omega }\), but do not derive \(\mathrm {IP}^{\omega }\). For that, we show that an extension \(\mathbf{S}\) of them is consistent relative to an extension of \(\mathbf {EL}\), using two interpretations.

2 A general machinery and non-constructive principles

2.1 A general machinery

We use the standard language of (many-sorted) first-order predicate logic containing \(\wedge , \vee , \mathbin {\rightarrow }, \bot , \forall \) and \(\exists \) as primitive logical operators. Prime formulae are atomic formulae or \(\bot \).

Definition 1

We introduce certain predicate symbols \({\varvec{\nu }}_1, {\varvec{\nu }}_2, {\varvec{\nu }}_3, \ldots \) (being outside of our standard language), called place holders, to deal with schemata as syntactic objects similar to formulae. Schemata are inductively defined by

  1. 1.

    a prime formula is a schema;

  2. 2.

    if \({\varvec{\nu }}\) is an n-ary place holder and \(t_1, \ldots , t_n\) are terms, then \({\varvec{\nu }}(t_1, \ldots , t_n)\) is a schema;

  3. 3.

    if \({\varvec{\alpha }}\) and \({\varvec{\beta }}\) are schemata, then \({\varvec{\alpha }} \circ {\varvec{\beta }}\) is a schema for \(\circ \in \{ \wedge , \vee , \mathbin {\rightarrow }\}\);

  4. 4.

    if \({\varvec{\alpha }}\) is a schema, then \(Q x {\varvec{\alpha }}\) is a schema for \(Q \in \{ \forall , \exists \}\).

Formulae are schemata without place holders.

For example, the induction schema is given by a schema

$$\begin{aligned} {\varvec{\nu }}(0) \wedge \forall x ({\varvec{\nu }}(x) \mathbin {\rightarrow }{\varvec{\nu }}(Sx)) \mathbin {\rightarrow }\forall x {\varvec{\nu }}(x) , \end{aligned}$$

where \({\varvec{\nu }}\) is a unary place holder and x is a numerical variable, and the axiom of choice \(\mathrm {AC}_{\sigma ,\tau }\) is given by a schema

$$\begin{aligned} \forall x^{\sigma }\exists y^{\tau }{\varvec{\nu }}(x,y)\rightarrow \exists z^{\sigma \rightarrow \tau }\forall x^{\sigma }{\varvec{\nu }}(x,zx), \end{aligned}$$

where \({\varvec{\nu }}\) is a binary place holder.

Definition 2

Let \({\varvec{\alpha }}\) be a schema, and let \(B_1, \ldots , B_k\) be formulae. Let \({\varvec{\nu }}_1, \ldots , {\varvec{\nu }}_k\) be place holders, and let \(\vec {x_1}, \ldots , \vec {x_k}\) be sequences of variables with lengths the arities of \({\varvec{\nu }}_1, \ldots , {\varvec{\nu }}_k\), respectively. Then a schema \( {\varvec{\alpha }}[{\varvec{\nu }}_1/\lambda \vec {x_1}. B_1, \ldots , {\varvec{\nu }}_k/\lambda \vec {x_k}. B_k] \) is defined by

  1. 1.

    \(P[{\varvec{\nu }}_1/\lambda \vec {x_1}. B_1, \ldots , {\varvec{\nu }}_k/\lambda \vec {x_k}. B_k] \equiv P\) for P prime;

  2. 2.

    \({\varvec{\nu }}(t_1, \ldots , t_n)[{\varvec{\nu }}_1/\lambda \vec {x_1}. B_1, \ldots , {\varvec{\nu }}_k/\lambda \vec {x_k}. B_k] \equiv B_i[y_1/t_1, \ldots , y_n/t_n]\) if \({\varvec{\nu }} \equiv {\varvec{\nu }}_i\) and \(\vec {x_i} \equiv y_1, \ldots , y_n\), and \({\varvec{\nu }}(t_1, \ldots , t_n)\) otherwise;

  3. 3.

    \(({\varvec{\alpha }} \circ {\varvec{\beta }})[{\varvec{\nu }}_1/\lambda \vec {x_1}. B_1, \ldots ,{\varvec{\nu }}_k/\lambda \vec {x_k}. B_k]\equiv {\varvec{\alpha }}[{\varvec{\nu }}_1/\lambda \vec {x_1}. B_1, \ldots , {\varvec{\nu }}_k/\lambda \vec {x_k}. B_k] \circ {\varvec{\beta }}[{\varvec{\nu }}_1/\lambda \vec {x_1}. B_1, \ldots , {\varvec{\nu }}_k/\lambda \vec {x_k}. B_k]\) for \(\circ \in \{ \wedge , \vee , \mathbin {\rightarrow }\}\);

  4. 4.

    \((Q x {\varvec{\alpha }})[{\varvec{\nu }}_1/\lambda \vec {x_1}.B_1, \ldots , {\varvec{\nu }}_k/\lambda \vec {x_k}. B_k] \equiv Q x ({\varvec{\alpha }}[{\varvec{\nu }}_1/\lambda \vec {x_1}. B_1, \ldots , {\varvec{\nu }}_k/\lambda \vec {x_k}. B_k])\) for \(Q \in \{ \forall , \exists \}\).

We write \({\varvec{\alpha }}[{\varvec{\nu }}_1/B_1, \ldots , {\varvec{\nu }}_k/B_k]\) or \({\varvec{\alpha }}[B_1, \ldots , B_k]\) for \({\varvec{\alpha }}[{\varvec{\nu }}_1/\lambda \vec {x_1}. B_1, \ldots , {\varvec{\nu }}_k/\lambda \vec {x_k}. B_k]\), if it does not cause confusion. An instance of a schema \({\varvec{\alpha }}\) with place holders exactly \(\vec {{\varvec{\nu }}}\) is a formula \({\varvec{\alpha }}[\vec {{\varvec{\nu }}}/\vec {B}]\) or \({\varvec{\alpha }}[\vec {B}]\).

Remark 3

For the substitution notation \({\varvec{\alpha }}[\vec {{\varvec{\nu }}}/\vec {B}]\), we shall assume that \(\vec {B}\) are free for \(\vec {{\varvec{\nu }}}\) in \({\varvec{\alpha }}\), or we assume that a suitable renaming of bound variables is carried out. Here \(\lambda \vec {x}. B\) is free for \({\varvec{\nu }}\) in P for prime P; \(\lambda \vec {x}. B\) is free for \({\varvec{\nu }}\) in \({\varvec{\nu }}'(t_1,\ldots ,t_n)\); \(\lambda \vec {x}. B\) is free for \({\varvec{\nu }}\) in \({\varvec{\alpha }}\circ {\varvec{\beta }}\) if \(\lambda \vec {x}. B\) is free for \({\varvec{\nu }}\) in \({\varvec{\alpha }}\) and \({\varvec{\beta }}\); \(\lambda \vec {x}. B\) is free for \({\varvec{\nu }}\) in \(Qy{\varvec{\alpha }}\) if \(y\notin \mathrm {FV}(B){\setminus }\{ \vec {x}\}\) and \(\lambda \vec {x}. B\) is free for \({\varvec{\nu }}\) in \({\varvec{\alpha }}\).

For a set \(\varLambda \) of schemata and a formula A, we write \(\varLambda \vdash A\) to express that a set of instances of schemata in \(\varLambda \) derives A.

Definition 4

The class \(\mathscr {RH}\) of Rasiowa–Harrop schemata is defined as follows. Let P range over prime formulae, \({\varvec{\eta }}\) and \({\varvec{\eta }}'\) over \(\mathscr {RH}\), and \({\varvec{\alpha }}\) over arbitrary schemata. Then \(\mathscr {RH}\) is inductively generated by the clause

$$\begin{aligned} P, {\varvec{\eta }} \wedge {\varvec{\eta }}', \forall x {\varvec{\eta }}, {\varvec{\alpha }} \mathbin {\rightarrow }{\varvec{\eta }} \in \mathscr {RH} . \end{aligned}$$

Let \(\varGamma \) be a class of formulae. Then non-constructive principles \(\varGamma \text {-}\mathrm {IP}\), \(\varGamma \text {-}\mathrm {LEM}\) and \(\varGamma \text {-}\mathrm {DNE}\) for \(\varGamma \) are defined as follows:

\(\varGamma \text {-}\mathrm {IP}\):

\((A\rightarrow \exists xB(x))\rightarrow \exists x(A\rightarrow B(x))\), where \(A\in \varGamma \), B is any formula and x is not free in A;

\(\varGamma \text {-}\mathrm {LEM}\):

\(A\vee \lnot A\), where \(A\in \varGamma \);

\(\varGamma \text {-}\mathrm {DNE}\):

\(\lnot \lnot A\rightarrow A\), where \(A\in \varGamma \).

Note that \(\mathrm {IP}\) explained introduction has the restriction on the formula A to Rasiowa–Harrop, but A in \(\varGamma \text {-}\mathrm {IP}\) is not always Rasiowa–Harrop.

In what follows, we assume that a class \(\varGamma \) of formulae satisfies the following two conditions:

  1. 1.

    \(A\in \varGamma \Rightarrow A[x/t]\in \varGamma \) (t must be free for x in A);

  2. 2.

    \(\exists xA\in \varGamma \Rightarrow \exists yA[x/y]\in \varGamma \) (y must be free for x in A, and \(y\equiv x\) or \(y\not \in \mathrm {FV}(A)\)).

For each class \(\varGamma \) of formulae, the class \(\exists \varGamma \), \(\forall \varGamma \) and \(\lnot \varGamma \) consist of formulae of the forms \(\exists x A\), \(\forall xA\) and \(\lnot A\) with a formula A in \(\varGamma \), respectively.

Proposition 5

If \(\mathbf{T}\) is a theory such that \(\mathbf{T}\vdash \varGamma \text {-}\mathrm {LEM}\), then \(\mathbf{T}\vdash \varGamma \text {-}\mathrm {IP}\).

Proof

Let A be a formula in \(\varGamma \) and B(x) a formula and assume \(A\rightarrow \exists xB(x)\). Then \(\mathbf{T}\) proves \(A\vee \lnot A\). If A, then there is x such that B(x) and so we have \(\exists x(A\rightarrow B(x))\). If \(\lnot A\), then we have \(A\rightarrow B(x)\) for any x and so \(\exists x(A\rightarrow B(x))\). Therefore \(\mathbf{T}\) proves \(\varGamma \text {-}\mathrm {IP}\). \(\square \)

Theorem 6

If \(\mathbf{T}\) is a theory such that \(\mathbf{T}\vdash \varGamma \text {-}\mathrm {LEM}\) and \(\mathbf{T}\vdash \exists \varGamma \text {-}\mathrm {DNE}\), and that \(\mathbf{T}\) is closed under \(\mathrm {IPR}\), then \(\mathbf{T}\vdash \exists \varGamma \text {-}\mathrm {LEM}\) and \(\mathbf{T}\vdash \exists \varGamma \text {-}\mathrm {IP}\).

Proof

Assume that \(\mathbf{T}\) is a theory such that \(\mathbf{T}\vdash \varGamma \text {-}\mathrm {LEM}\) and \(\mathbf{T}\vdash \exists \varGamma \text {-}\mathrm {DNE}\), and that \(\mathbf{T}\) is closed under \(\mathrm {IPR}\). Then, for each formula A in \(\varGamma \), we have \(\mathbf{T}\vdash \lnot \lnot \exists x A(x)\rightarrow \exists x A(x)\). Since \(\lnot \lnot \exists y A[x/y]\) is Rasiowa–Harrop and \(\mathbf{T}\) is closed under \(\mathrm {IPR}\), we have \(\mathbf{T}\vdash \exists x (\lnot \lnot \exists y A[x/y]\rightarrow A(x))\). Assume that \(\lnot \lnot \exists yA[x/y]\rightarrow A(x)\). Since \(\mathbf{T}\vdash \varGamma \text {-}\mathrm {LEM}\), we have \(A(x)\vee \lnot A(x)\). If A(x), then \(\exists x A(x)\); if \(\lnot A(x)\), then \(\lnot \exists yA[x/y]\). Therefore \(\mathbf{T}\vdash \exists x A(x)\vee \lnot \exists x A(x)\). The rest follows from Proposition 5. \(\square \)

Proposition 7

If \(\mathbf{T}\) is a theory such that \(\mathbf{T}\vdash \varGamma \text {-}\mathrm {LEM}\), \(\mathbf{T}\vdash \exists \varGamma \text {-}\mathrm {DNE}\) and \(\mathbf{T}\vdash \lnot \lnot \exists \varGamma \text {-}\mathrm {IP}\), then \(\mathbf{T}\vdash \exists \varGamma \text {-}\mathrm {LEM}\).

Proof

This can be proved in a similar way to the above theorem, by using \(\lnot \lnot \exists \text {-}\mathrm {IP}\) instead of \(\mathrm {IPR}\). \(\square \)

Corollary 8

Let \(\mathbf{T}\) be a theory such that \(\mathbf{T}\vdash \varGamma \text {-}\mathrm {LEM}\).

  1. 1.

    If \(\mathbf{T}\not \vdash \exists \varGamma \text {-}\mathrm {LEM}\) and \(\mathbf{T}\vdash \exists \varGamma \text {-}\mathrm {DNE}\), then \(\mathbf{T}\) is not closed under \(\mathrm {IPR}\). In particular, such \(\mathbf{T}\) derives \(\varGamma \text {-}\mathrm {IP}\) but neither \(\exists \varGamma \text {-}\mathrm {IP}\) nor \(\mathrm {IP}\).

  2. 2.

    If \(\mathbf{T}\not \vdash \exists \varGamma \text {-}\mathrm {LEM}\) and \(\mathbf{T}\) is closed under \(\mathrm {IPR}\), then \(\mathbf{T}\not \vdash \exists \varGamma \text {-}\mathrm {DNE}\).

2.2 Heyting arithmetic and non-constructive principles

In this subsection, we apply the results of the previous subsection to intuitionistic first order arithmetic \(\mathbf {HA}\) (cf. [7, 1.3.3–1.3.4] and [9, 3.3.1]) with some non-constructive axioms in [1].

In the language \(\mathscr {L}(\mathbf {HA})\) of \(\mathbf {HA}\), the class \(\varDelta _0\) is the smallest class containing prime formulae and closed under \(\wedge \), \(\vee \), \(\rightarrow \), \(\forall x<t\) and \(\exists x<t\). The class \(\varDelta _0\) is called as well as \(\varSigma _0\) or \(\varPi _0\). The class \(\varSigma _{n+1}\) and \(\varPi _{n+1}\) are \(\exists \varPi _n\) and \(\forall \varSigma _n\), respectively.

Akama et al. [1, \(\S 3\)] proved the following.

Lemma 9

  1. 1.

    \(\mathbf {HA}+\varSigma _n\text {-}\mathrm {LEM}\vdash \varSigma _n\text {-}\mathrm {DNE}\);

  2. 2.

    \(\mathbf {HA}+\varSigma _{n+1}\text {-}\mathrm {DNE}\vdash \varSigma _{n}\text {-}\mathrm {LEM}\);

  3. 3.

    \(\mathbf {HA}+\varSigma _n\text {-}\mathrm {DNE}\not \vdash \varSigma _n\text {-}\mathrm {LEM}\);

  4. 4.

    \(\mathbf {HA}+\varSigma _{n}\text {-}\mathrm {LEM}\not \vdash \varSigma _{n+1}\text {-}\mathrm {DNE}\).

As for the relationship between \(\mathrm {IP}\) and \(\mathrm {DNE}\), we have the following:

Proposition 10

\(\mathbf {HA}+\mathrm {IP}\not \vdash \varSigma _1\text {-}\mathrm {DNE}\).

Proof

In [7, 3.4.8 and 3.4.12], a model of \(\mathbf {HA}^{\omega }+\mathrm {IP}^{\omega }_{\lnot }+\mathrm {AC}\) in which \(\mathrm {MP}_\mathrm{PR}\) does not hold, where \(\mathrm {IP}^{\omega }_{\lnot }\) and are schemata

\(\mathrm {MP}_\mathrm{PR}\):

\(\lnot \lnot \exists xA(x)\rightarrow \exists xA(x)\), for any primitive recursive A;

\(\mathrm {IP}^{\omega }_{\lnot }\):

\((\lnot A\rightarrow \exists x^{\sigma }B)\rightarrow \exists x(\lnot A\rightarrow B)\), x is not free in A, \(\sigma \) is any type.

Note that we can prove, by induction on the formulae, that each Rasiowa–Harrop formulae in the language of \(\mathbf {HA}\) is equivalent to some formula of the form \(\lnot A\) which is also Rasiowa–Harrrop. Then each of the axioms of \(\mathbf {HA}+\mathrm {IP}\) is interpretable in \(\mathbf {HA}^{\omega }+\mathrm {IP}^{\omega }_{\lnot }+\mathrm {AC}\) by a standard way, and so the above model shows that \(\mathbf {HA}^{\omega }+\mathrm {IP}\) does not derive \(\varSigma _1\text {-}\mathrm {DNE}\). \(\square \)

By the results of the previous section, we have the following:

Corollary 11

\(\mathbf {HA}+\varSigma _{n+1}\text {-}\mathrm {DNE}\) is not closed under \(\mathrm {IPR}\).

Proof

Let \(\varGamma \) be the class \(\varPi _n\). Then \(\varGamma \text {-}\mathrm {LEM}\), \(\exists \varGamma \text {-}\mathrm {LEM}\) and \(\exists \varGamma \text {-}\mathrm {DNE}\) are \(\varPi _{n}\text {-}\mathrm {LEM}\), \(\varSigma _{n+1}\text {-}\mathrm {LEM}\) and \(\varSigma _{n+1}\text {-}\mathrm {DNE}\), respectively. Let \(\mathbf{T}\) be \(\mathbf {HA}+\varSigma _{n+1}\text {-}\mathrm {DNE}\). Note that \(\mathbf {HA}+\varSigma _{n}\text {-}\mathrm {LEM}\vdash \varPi _n\text {-}\mathrm {LEM}\) (cf. [1, Theorem 3.1]). Then, by Lemma 9 (2), we have \(\mathbf{T}\vdash \varPi _n\text {-}\mathrm {LEM}\). On the other hand we have \(\mathbf{T}\not \vdash \varSigma _{n+1}\text {-}\mathrm {LEM}\) by Lemma 9 (3) and \(\mathbf{T}\vdash \varSigma _{n+1}\text {-}\mathrm {DNE}\). By Corollary 8 (1), \(\mathbf{T}\) is not closed under \(\mathrm {IPR}\). \(\square \)

Definition 12

The classes \(\mathscr {S}\) and \(\mathscr {W}\) of schemata are simultaneously defined as follows. Let \({\varvec{\eta }}\) range over \(\mathscr {RH}\), \({\varvec{\nu }}\) over expressions \({\varvec{\nu }}_k(t_1 \ldots t_n)\) (\({\varvec{\nu }}_k\) an n-ary place holder symbol), \({\varvec{\gamma }}\) and \({\varvec{\gamma }}'\) over \(\mathscr {S}\), and \({\varvec{\delta }}\) and \({\varvec{\delta }}'\) over \(\mathscr {W}\). Then \(\mathscr {S}\) and \(\mathscr {W}\) are inductively generated by the clauses

$$\begin{aligned}&{\varvec{\eta }}, {\varvec{\nu }}, {\varvec{\gamma }} \wedge {\varvec{\gamma }}', {\varvec{\gamma }} \vee {\varvec{\gamma }}', \forall x {\varvec{\gamma }}, \exists x {\varvec{\gamma }}, {\varvec{\delta }} \mathbin {\rightarrow }{\varvec{\gamma }} \in \mathscr {S} ; \\&{\varvec{\nu }}, {\varvec{\delta }} \wedge {\varvec{\delta }}', {\varvec{\delta }} \vee {\varvec{\delta }}', \forall x {\varvec{\delta }}, \exists x {\varvec{\delta }}, {\varvec{\gamma }} \mathbin {\rightarrow }{\varvec{\delta }} \in \mathscr {W} . \end{aligned}$$

Proposition 13

If \(\varLambda \) is a set of schemata in \(\mathscr {S}\), then \(\mathbf {HA}+\varLambda \) is closed under \(\mathrm {IPR}\).

Proof

See [2, Theorem 3.1]. \(\square \)

Corollary 14

\(\mathbf {HA}+\varSigma _n\text {-}\mathrm {LEM}\) is closed under \(\mathrm {IPR}\), but does not derive \(\mathrm {IP}\).

Proof

Each instance of \(\varSigma _n\text {-}\mathrm {LEM}\) is equivalent to a formula of the form

$$\begin{aligned} \exists x_{n}\forall x_{n-1}\ldots Qx_1(t(x_1,\ldots ,x_{n})=0)\vee \lnot \exists x_{n}\forall x_{n-1}\ldots Qx_1(t(x_1,\ldots ,x_{n})=0), \end{aligned}$$

which is in the class \(\mathscr {S}\). Therefore \(\mathbf {HA}+\varSigma _n\text {-}\mathrm {LEM}\) is closed under \(\mathrm {IPR}\) by Proposition 13. If \(\mathbf {HA}+\varSigma _n\text {-}\mathrm {LEM}\) proves \(\mathrm {IP}\), then so does \(\mathbf {HA}+\varSigma _{n+1}\text {-}\mathrm {DNE}\) by Lemma 9 (2), which is impossible, by Corollary 11. \(\square \)

Although \(\mathbf {HA}+\varSigma _n\text {-}\mathrm {LEM}\) does not prove the full \(\mathrm {IP}\), some fragments are provable.

Corollary 15

  1. 1.

    \(\mathbf {HA}+\varSigma _n\text {-}\mathrm {LEM}\vdash \varSigma _n\text {-}\mathrm {IP}\).

  2. 2.

    \(\mathbf {HA}+\varSigma _{n+1}\text {-}\mathrm {DNE}\vdash \varSigma _n\text {-}\mathrm {IP}\).

Proof

1 follows from Proposition 5. 2 follows from 2 of Lemma 9 and the above 1.    \(\square \)

Remark 16

Since the system \(\mathbf {HA}+\varSigma _n\text {-}\mathrm {LEM}\) proves full induction, it proves \(\varDelta (\varSigma _n)\text {-}\mathrm {LEM}\), where \(\varDelta (\varSigma _n)\) is the smallest class containg \(\varSigma _n\) and closed under \(\wedge \), \(\vee \), \(\rightarrow \), \(\forall x<t\) and \(\exists x<t\) (cf. [6, Corollary 84]). Hence \(\varSigma _n\text {-}\mathrm {IP}\) can be enhanced as \(\varDelta (\varSigma _n)\text {-}\mathrm {IP}\) in the above corollary.

3 Non-classical axioms

In this section, we consider intuitionistic finite type arithmetic \(\mathbf {HA}^\omega \), which is called \(\mathbf {HA}^\omega _{\rightarrow }\) in [9, Ch.9.1.18] and its extensions with non-classical axioms.

The following schemata are in the class \(\mathscr {S}\) (cf. [2, Theorem 3.1]), and so \(\mathbf {HA}^\omega \) extended by any subset of them is closed under \(\mathrm {IPR}^\omega \).

\(\mathrm {FAN}\):

\(\forall a^1 \exists x^0 {\varvec{\nu }}(\overline{(a \sqcap 1)}x) \mathbin {\rightarrow }\exists z^0 \forall a^1 \exists y^0 ( y \le z \wedge {\varvec{\nu }}(\overline{(a \sqcap 1)}y) , \) where \( (a \sqcap 1) n \equiv \min \{an,1\}; \)

\(\mathrm {BI}_\mathrm {M}\):

\([ \forall a^1 \exists x^0 {\varvec{\nu }}(\overline{a}x) \wedge \forall y^0 \forall z^0 ({\varvec{\nu }}(y) \mathbin {\rightarrow }{\varvec{\nu }}(y *z)) \wedge \forall y^0 (\forall u^0 {\varvec{\nu }}(y *\langle u \rangle ) \mathbin {\rightarrow }{\varvec{\nu }}(y)) ]\) \(\mathbin {\rightarrow }{\varvec{\nu }}(\langle \rangle ); \)

\(\mathrm {AC}_{\sigma ,\tau }\):

\(\forall x^\sigma \exists y^\tau {\varvec{\nu }}(x,y) \mathbin {\rightarrow }\exists z^{\sigma \rightarrow \tau } \forall x^\sigma {\varvec{\nu }}(x,zx) ; \)

\(\mathrm {DC}_\sigma \):

\(\forall x^\sigma \exists y^\sigma {\varvec{\nu }}(x,y) \mathbin {\rightarrow }\forall x^\sigma \exists z^{0 \rightarrow \sigma } ( z0 = x \wedge \forall n^0 {\varvec{\nu }}(zn,z(Sn)) ) ; \)

\(\mathrm {WC}\text {-}\mathrm {N}\):

\(\forall a^1 \exists x^0 {\varvec{\nu }}(a,x) \mathbin {\rightarrow }\forall a^1 \exists x^0 \exists y^0 \forall b^1 {\varvec{\nu }}(\overline{a}x *b,y) ; \)

\(\mathrm {C}\text {-}\mathrm {N}\):

\(\forall a^1 \exists x^0 {\varvec{\nu }}(a,x) \mathbin {\rightarrow }\exists c^1 [ c \in K_0 \wedge \forall a^1 \exists y^0 \exists z^0 ( c(\overline{a}y) = z+1 \wedge {\varvec{\nu }}(a,z) ) ] , \) where \( c \in K_0 \mathrel {\Leftrightarrow }\forall a^1 \exists y^0 ( c(\overline{a}y) \ne 0) \wedge \forall y^0 \forall z^0 (cn \ne 0 \mathbin {\rightarrow }cy = c(y *z)) . \)

Note that \(\mathrm {BI}_\mathrm{M}\) implies \(\mathrm {FAN}\) (cf. [3, Ch.I, §6.10]) and \(\mathrm {C}\text {-}\mathrm {N}\) implies \(\mathrm {WC}\text {-}\mathrm {N}\) (cf. [9, Ch.4.6.8]).

We prove that \(\mathbf {HA}^\omega \) with any subset of the above schemata does not derive \(\mathrm {IP}^\omega \).

The problem is treated as follows.

Let \(\mathrm {MP}\) and \(\mathrm {LPO}\) be the following non-constructive principles:

\(\mathrm {MP}\):

\(\forall a^1(\lnot \lnot \exists x^0(a^1(x)=0)\rightarrow \exists x^0(a(x)=0))\);

\(\mathrm {LPO}\):

\(\forall a^1(\exists x^0(a^1(x)=0)\vee \lnot \exists x^0(a(x)=0))\).

Note that \(\mathrm {MP}\) and \(\mathrm {LPO}\) are equivalent to \(\exists \varDelta \text {-}\mathrm {DNE}\) and \(\exists \varDelta \text {-}\mathrm {LEM}\), respectively, where \(\varDelta \) is the class of formulae of the form \(t^1(x^0)=0\).

Define a theory \(\mathbf{S}\) by

$$\begin{aligned} \mathbf{S}\equiv \mathbf {HA}^\omega +\mathrm {BI}_\mathrm{M}+\mathrm {C}\text {-}\mathrm {N}+\mathrm {AC}+\mathrm {DC}+\mathrm {MP}, \end{aligned}$$

where \(\mathrm {AC}\equiv \bigcup _{\sigma ,\tau }\mathrm {AC}_{\sigma ,\tau }\) (cf. [7, 3.4.7]) and \(\mathrm {DC}\equiv \bigcup _{\sigma }\mathrm {DC}_\sigma \) (cf. [5, 11.2], where \(\mathrm {DC}_\sigma \) is called \(\mathrm{DAC}^\sigma \)). If we have \(\mathbf{S}\not \vdash \mathrm {LPO}\), i.e., \(\mathbf{S}\not \vdash \exists \varDelta \text {-}\mathrm {LEM}\) then \(\mathbf{S}\) is not closed under \(\mathrm {IPR}^\omega \) by Corollary 8 (1), and it does not derive \(\mathrm {IP}^\omega \).

To prove that \(\mathbf{S}\not \vdash \mathrm {LPO}\), we should note that \(\mathrm {C}\text {-}\mathrm {N}\) refutes \(\mathrm {LPO}\). In fact, \(\mathrm {C}\text {-}\mathrm {N}\) refutes \(\forall \text {-}\mathrm {PEM}\) (cf. [9, Ch.4.6.4]), and \(\mathrm {LPO}\) implies \(\forall \text {-}\mathrm {PEM}\) (cf. [9, Ch.4.3.4, Remark], where \(\mathrm {LPO}\) is called \(\exists \text {-}\mathrm {PEM}\)). Therefore, if \(\mathbf{S}\) is consistent, then \(\mathbf{S}\not \vdash \mathrm {LPO}\).

Thus the problem is reduced to the consistency of \(\mathbf{S}\). We show, using two interpretations, the relative consistency of \(\mathbf{S}\) to a definitional extension of the system of elementary analysis \(\mathbf {EL}\) (cf. [9, Ch.3.6.2]), whose model can be easily constructed in \(\mathbf{ZF}\).

In Sect. 3.1, we give the definition of the system \(\mathbf {EL}^*\), a definitional extension of \(\mathbf {EL}\), and some properties of it for later use. In Sect. 3.2, we show that \(\mathbf{S}\) is consistent relative to \(\mathbf {EL}^*+\mathrm {BI}_\mathrm{M}+\mathrm {MP}+\mathrm {GC}\), by a modified version of the interpretation \([\![-]\!] _{\mathrm {ICF}^*}\) defined in [9, Ch.9.1.16]. In Sect. 3.3, we combine it with the functional realizability interpretation, and show that \(\mathbf {EL}^*+\mathrm {BI}_\mathrm{M}+\mathrm {MP}+\mathrm {GC}\), and hence \(\mathbf{S}\), is consistent relative to \(\mathbf {EL}+\mathrm {MP}+\mathrm {BI}_\mathrm{D}\).

We fix a surjective pairing function \((-,-):\mathbb {N}\times \mathbb {N}\rightarrow \mathbb {N}\) and projections \((-)_i:\mathbb {N}\rightarrow \mathbb {N}\) such that \(((x)_0, (x)_1)=n\), \(((x,y))_0=x\) and \(((x,y))_1=y\) for all \(x^0\) and \(y^0\). For each \(\alpha \), we define \((\alpha )_i\) by \((\alpha )_i(x)=(\alpha (x))_i\).

3.1 The system \(\mathbf {EL}^*\)

In the next subsection, we use the language \(\mathscr {L}(\mathbf {EL}^*)\) of the definitional extension \(\mathbf {EL}^*\) of \(\mathbf {EL}\) defined in [8, Section 2.5].

Definition 17

A theory \(T'\) in the language \(\mathscr {L}'\) such that \(\mathscr {L}\subseteq \mathscr {L}'\) is a definitional extension of a theory T in the language \(\mathscr {L}\) if there is a mapping \(\texttt {s}\) from the set of formulae in \(\mathscr {L}'\) to the set of formulae in \(\mathscr {L}\) with the following properties.

  1. 1.

    \(\texttt {s}(A)\equiv A\) for all formulae A in \(\mathscr {L}\);

  2. 2.

    \(T'\vdash \texttt {s}(A)\leftrightarrow A\) for all formulae A in \(\mathscr {L}'\);

  3. 3.

    if \(T'\vdash A\), then \(T\vdash \texttt {s}(A)\);

  4. 4.

    \(\texttt {s}\) commutes all logical operations of \(\mathscr {L}\).

Noticing that \(\alpha =_1\beta \) is defined by \(\forall x(\alpha (x)=\beta (x))\) and that the function \(\lambda \text {-}.\text {-}\) is defined on pairs of variables and terms, not pairs of terms, we can prove that the following \(\mathbf {EL}^*\) is a definitional extension of \(\mathbf {EL}\) in a similar way to [9, Ch.2.7.10–12].

Definition 18

(Description of \(\mathbf {EL}^*\)) The language \(\mathscr {L}(\mathbf {EL}^*)\) contains, in addition to the symbols of \(\mathscr {L}(\mathbf {EL})\), binary term constructors \(\text {-}|\text {-}\), \(\text {-}(\text {-})\), and unary predicate symbols \(\text {-}{\downarrow }_{0}\) and \(\text {-}{\downarrow }_1\).

Functors (function term) and (numerical) terms are extended by adding the following clauses to (i)–(v) in [9, Ch.3.6.2]:

  • if \(\phi \) and \(\chi \) are functors, then \(\phi (\chi )\) is a term,

  • if \(\phi \) and \(\chi \) are functors, then \(\phi |\chi \) is a functor.

Atomic formulae are extended by the following clauses:

  • if t is a term, then \(t{\downarrow }_0\) is an atomic formula,

  • if \(\phi \) is a functor, then \(\phi {\downarrow }_1\) is an atomic formula.

Free variables and bounded variables in terms, functors and formulae are defined as usual. We use, possibly with subscripts, u, v, w, x, y, z for numerical variables, abc for codes of finite sequences of natural numbers, r, s and t for numerical terms, \(\alpha \), \(\beta \), \(\gamma \) and \(\delta \) for function variables, and \(\phi \), \(\chi \) and \(\psi \) for functors. Note that, as in \(\mathbf {EL}\), the equality \(=_1\) between functors is defined by \( \phi =_1 \chi \equiv \forall x (\phi (x) = \chi (x)) \) (cf. [9, Ch.3.6.3 Notations]).

The logic of \(\mathbf {EL}^*\) is two-sorted E\(^+\) logic with equality. Here, we follow the formalisation \(\mathrm {H}_2\text {-}\mathbf {IQCE}^+\) (cf. [9, Ch.2.4.5]) with the quantifier axioms:

\((\exists \text {-}\mathrm {Ax}^{\mathrm {E},0}_{2})\):

\(A[x/t] \wedge t{\downarrow }_0 \mathbin {\rightarrow }\exists x A , \)

\((\forall \text {-}\mathrm {Ax}^{\mathrm {E},0}_{2})\):

\(\forall x A \wedge t{\downarrow }_0 \mathbin {\rightarrow }A[x/t] , \)

\((\exists \text {-}\mathrm {Ax}^{\mathrm {E},1}_{2})\):

\(A[\alpha /\phi ] \wedge \phi {\downarrow }_1 \mathbin {\rightarrow }\exists \alpha A , \)

\((\forall \text {-}\mathrm {Ax}^{\mathrm {E},1}_{2})\):

\(\forall \alpha A \wedge \phi {\downarrow }_1 \mathbin {\rightarrow }A[\alpha /\phi ] ; \)

the quantifier rules:

where \(x \notin \mathrm {FV}(A)\), and \(y \equiv x\) or \(y \notin \mathrm {FV}(B)\), and where \(\alpha \notin \mathrm {FV}(A)\), and \(\beta \equiv \alpha \) or \(\beta \notin \mathrm {FV}(B)\).

The axioms for existence, equality and strictness are as follows:

\(\mathrm {EAX}\):

\(\begin{array}{lll} x{\downarrow }_0, &{} 0{\downarrow }_0, &{} \alpha {\downarrow }_1, \\ t{\downarrow }_0 \mathbin {\leftrightarrow }\exists x (x=t), &{} \phi {\downarrow }_1 \mathbin {\leftrightarrow }\exists \alpha (\alpha =_1 \phi ) , &{} \\ \exists \alpha \forall u (t = \alpha (u)) \mathbin {\leftrightarrow }(\lambda u.t){\downarrow }_1^1;\end{array}\)Footnote 1

\(\mathrm {REFL}\):

\(\forall x (x = x) , \)

\(\mathrm {REPL}\):

\(\begin{array}{l} R \vec {s} \vec {\chi } \wedge \vec {s} = \vec {t} \wedge \vec {\chi } =_1 \vec {\phi }\mathbin {\rightarrow }R \vec {t} \vec {\phi } , \\ (f \vec {s} \vec {\chi }){\downarrow }_k \wedge \vec {s} = \vec {t} \wedge \vec {\chi } =_1 \vec {\phi } \mathbin {\rightarrow }f \vec {s} \vec {\chi } =_k f \vec {t} \vec {\phi } ; \\ \end{array} \)

\(\mathrm {STR}\):

\(\begin{array}{l} R(t_0,\ldots ,t_{n-1}, \phi _0,\ldots ,\phi _{m-1}) \mathbin {\rightarrow }t_i{\downarrow }_0 \wedge \phi _j{\downarrow }_1 , \\ f(t_0,\ldots ,t_{n-1}, \phi _0,\ldots ,\phi _{m-1}){\downarrow }_k \mathbin {\rightarrow }t_i{\downarrow }_0 \wedge \phi _j{\downarrow }_1 , \\ g(t_0,\ldots ,t_{n-1}, \phi _0,\ldots ,\phi _{m-1}){\downarrow }_k \mathbin {\leftrightarrow }t_i{\downarrow }_0 \wedge \phi _j{\downarrow }_1 ; \\ \end{array}\)

where R is the equality \(=\), \({\downarrow }_0\) or \({\downarrow }_1\), f is \(\text {-}(\text {-})\), \(\text {-}|\text {-}\) or \(\lambda u. \text {-}\) for numerical variable u, and g is the application operator \(\mathrm {Ap}\), the recursor \({{\varvec{r}}}\) or a function symbol of \(\mathscr {L}(\mathbf {HA})\).

As non-logical axioms, we have the axioms of \(\mathbf {HA}\), with induction extended to formulae of \(\mathscr {L}(\mathbf {EL}^*)\), and the following modified versions of the axioms (\(\mathrm {CON}\)), (\(\mathrm {REC}\)) and (\(\mathrm {QF}\text {-}\mathrm {AC}\)):

\(\mathrm {CON}\):

\((\lambda u. t){\downarrow }_1 \wedge s{\downarrow }_0 \mathbin {\rightarrow }(\lambda u. t) s = t[x/s] ,\)

\(\mathrm {REC}\):

\(\begin{array}{l} \phi {\downarrow }_1 \wedge t{\downarrow }_0 \mathbin {\rightarrow }{{\varvec{r}}}(t,\phi ,0) = t , \\ \phi {\downarrow }_1 \wedge t{\downarrow }_0 \wedge s{\downarrow }_0 \mathbin {\rightarrow }{{\varvec{r}}}(t,\phi , S s) = \phi ({{\varvec{r}}}(t,\phi ,s),s) , \end{array}\)

\(\mathrm {QF}\text {-}\mathrm {AC}\):

\(\forall x \exists y A(x,y) \mathbin {\rightarrow }\exists \alpha \forall x A(x,\alpha (x)) ,\)

for quantifier-free A in \(\mathscr {L}(\mathbf {EL})\) with \(\alpha \notin \mathrm {FV}(A)\); and the following axioms for the function symbols \(\text {-}(\text {-})\) and \(\text {-}|\text {-}\):

\(\mathrm {CFA}\):

\(\begin{array}{l} \forall \alpha \beta \forall x [ G_0(\alpha ,\beta ,x) \mathbin {\leftrightarrow }\alpha (\beta ) = x ] , \\ \forall \alpha \beta \gamma [ G_1(\alpha ,\beta ,\gamma ) \mathbin {\leftrightarrow }\alpha |\beta =_1 \gamma ] , \end{array}\)

where \(G_0(\alpha ,\beta ,x)\) and \(G_1(\alpha ,\beta ,\gamma )\) are defined as follows:

$$\begin{aligned} G_{0}(\alpha ,\beta ,x)&\equiv \exists v [ \forall w< v(\alpha (\overline{\beta } w) = 0) \wedge \alpha (\overline{\beta } v) =x+1] , \\ G_{1}(\alpha ,\beta ,\gamma )&\equiv \forall u \exists v [ \forall w < v (\alpha (\langle u \rangle *\overline{\beta } w) = 0) \wedge \alpha (\langle u \rangle *\overline{\beta } v) = \gamma (u)+1 ]. \end{aligned}$$

The function \(\text {-}|\text {-}\) is supposed to be left-associative. For example, we write \(\alpha |\beta |\gamma \) for \((\alpha |\beta )|\gamma \).

Remark 19

The following are proved by induction on the construction of terms and functors.

  1. 1.

    Let t and \(\phi \) be a term and a functor in \(\mathscr {L}(\mathbf {EL})\), respectively. Then \( \mathbf {EL}^*\vdash t{\downarrow }_0 \) and \( \mathbf {EL}^*\vdash \phi {\downarrow }_1 . \)

  2. 2.

    If \(\phi \) and \(\chi \) be functors in \(\mathscr {L}(\mathbf {EL})\), then

    $$\begin{aligned} \mathbf {EL}^*\vdash (\phi |\chi ){\downarrow }_1 \mathbin {\leftrightarrow }\forall u \exists v (0 < \phi (\langle u \rangle *\overline{\chi } v)) . \end{aligned}$$

Remark 20

If the following form of \(\mathrm {QF}\text {-}\mathrm {AC}\) were included in \(\mathbf {EL}^*\), then the resulting system would not be a conservative extension of \(\mathbf {EL}\):

\(\mathrm {QF}\text {-}\mathrm {AC}^+\):

\(\forall x \exists y A(x,y) \mathbin {\rightarrow }\exists \alpha \forall x A(x,\alpha (x)) ,\)

for quantifier-free A in \(\mathscr {L}(\mathbf {EL}^*)\) with \(\alpha \notin \mathrm {FV}(A)\).

To see this, let T be Kleene’s T-predicate, and define a functor \(\phi _T\) in \(\mathscr {L}(\mathbf {EL})\) by

$$\begin{aligned}&\phi _T (\langle \rangle ) = 0 \quad \phi _T (\langle u \rangle *c) = {\left\{ \begin{array}{ll} 1 &{}\quad \text {if }\exists z < |c|\textit{Tuuz}\\ 0 &{}\quad \text {otherwise.} \end{array}\right. } \end{aligned}$$

Then

$$\begin{aligned} \exists z Txxz \mathbin {\leftrightarrow }\exists z G_0(\phi _T,\lambda u. x,z) \mathbin {\leftrightarrow }\exists z (\phi _T(\lambda u. x) = z) \mathbin {\leftrightarrow }(\phi _T(\lambda u. x)){\downarrow }_0 , \end{aligned}$$
(1)

in \(\mathbf {EL}^*\), by \(\mathrm {CFA}\) and \(\mathrm {EAX}\). Assume that \( \forall x (\exists z Txxz \vee \lnot \exists z Txxz) . \) Then

$$\begin{aligned} \forall x ((\phi _T(\lambda u. x)){\downarrow }_0 \vee \lnot (\phi _T(\lambda u. x)){\downarrow }_0) , \end{aligned}$$

and hence

$$\begin{aligned} \forall x \exists y [(y \ne 0 \mathbin {\rightarrow }(\phi _T(\lambda u. x)){\downarrow }_0) \wedge (y = 0 \mathbin {\rightarrow }\lnot (\phi _T(\lambda u. x)){\downarrow }_0)] . \end{aligned}$$

Therefore, applying \(\mathrm {QF}\text {-}\mathrm {AC}^+\), we have

$$\begin{aligned} \exists \gamma \forall x [(\gamma (x) \ne 0 \mathbin {\rightarrow }(\phi _T(\lambda u. x)){\downarrow }_0) \wedge (\gamma (x) = 0 \mathbin {\rightarrow }\lnot (\phi _T(\lambda u. x)){\downarrow }_0)] . \end{aligned}$$

Thus

$$\begin{aligned}&\forall x (\exists z Txxz \vee \lnot \exists z Txxz) \\&\quad \mathbin {\rightarrow }\exists \gamma \forall x [(\gamma (x) \ne 0 \mathbin {\rightarrow }(\phi _T(\lambda u. x)){\downarrow }_0) \wedge (\gamma (x) = 0 \mathbin {\rightarrow }\lnot (\phi _T(\lambda u. x)){\downarrow }_0)], \end{aligned}$$

and so, by (1),

$$\begin{aligned}&\forall x (\exists z Txxz \vee \lnot \exists z Txxz) \nonumber \\&\quad \mathbin {\rightarrow }\exists \gamma \forall x [ (\gamma (x) \ne 0 \mathbin {\rightarrow }\exists z(Txxz)) \wedge (\gamma (x) = 0 \mathbin {\rightarrow }\lnot \exists z(Txxz))]. \end{aligned}$$
(2)

If \(\mathbf {EL}^*+\mathrm {QF}\text {-}\mathrm {AC}^+\) were a definitional extension of \(\mathbf {EL}\), \(\mathbf {EL}\) would prove (2) by Definition 17, and hence \(\mathbf {EL}\) with classical logic would prove

$$\begin{aligned} \exists \gamma \forall x [(\gamma (x) \ne 0 \mathbin {\rightarrow }\exists z Txxz) \wedge (\gamma (x) = 0 \mathbin {\rightarrow }\lnot \exists z Txxz)] . \end{aligned}$$

This contradicts with the soundness for a standard (classical) model consisting of (total) recursive functions.

In the following, instead of taking the recursor \({{\varvec{r}}}\) as a primitive, we take its special case \(\mathrm {It}\) (iterator) satisfying

$$\begin{aligned} \chi {\downarrow }_1 \wedge t{\downarrow }_0 \mathbin {\rightarrow }\mathrm {It}(\chi ,t)(0) = t \wedge \mathrm {It}(\chi ,t)(S z) = \chi (\mathrm {It}(\chi ,t)(z)) . \end{aligned}$$

It is straightforward to show that this set of primitives is interdefinable with the set of the primitives of \(\mathbf {EL}^*\).

The following definition and Lemma 23 were given in [8, Section 2.6].

Definition 21

For each term t and functor \(\phi \) in \(\mathscr {L}(\mathbf {EL}^*)\), and function variable \(\alpha \), define functors \(\varPhi _{t,\alpha }\) and \(\varPhi _{\phi ,\alpha }\) in \(\mathscr {L}(\mathbf {EL})\) by simultaneous induction on the complexity of t and \(\phi \) as follows. Note that for each y, either \(y = 0\) or there exist unique z and c such that \(y = \langle z \rangle *c\). In the former case, define \(\varPhi _{\phi ,\alpha }(y) = \varPhi _{t,\alpha }(y) = 0\). In the latter case, we divide into the following cases.

Basis

Case 1 \(t \equiv 0\):

$$\begin{aligned} (\varPhi _{0,\alpha })(\langle z \rangle *c) = 1 . \end{aligned}$$

Case 2 \(t \equiv x\):

$$\begin{aligned} (\varPhi _{x,\alpha })(\langle z \rangle *c) = x+1 . \end{aligned}$$

Case 3 \(\phi \equiv \alpha \):

$$\begin{aligned} \varPhi _{\alpha ,\alpha }(\langle z \rangle *c) = {\left\{ \begin{array}{ll} c(z)+1 &{} \quad \text {if }z < |c|, \\ 0 &{} \quad \text {otherwise;} \end{array}\right. } \end{aligned}$$

Case 4 \(\phi \equiv \gamma \) and \(\gamma \not \equiv \alpha \):

$$\begin{aligned} (\varPhi _{\gamma ,\alpha })(\langle z \rangle *c) = \gamma (z)+1 . \end{aligned}$$

Case 5 \(\phi \equiv f\) for some unary function constant f of \(\mathbf {EL}\):

$$\begin{aligned} (\varPhi _{f,\alpha })(\langle z \rangle *c) = f(z)+1 . \end{aligned}$$

Induction step

Case 1 \(t \equiv \chi (\psi )\):

$$\begin{aligned} \varPhi _{\chi (\psi ),\alpha }(\langle z \rangle *c) = {\left\{ \begin{array}{ll} x + 1 &{} \quad \text {for }x< |c|\text { such that} \\ &{} \qquad 0< \varPhi _{\chi ,\alpha }(\langle z \rangle *c) \wedge 0< \varPhi _{\psi ,\alpha }(\langle z \rangle *c) \\ &{} \qquad \wedge \exists a b< |c| [ \forall i< |a| (\varPhi _{\chi ,\alpha }(\langle i \rangle *c) = a(i) + 1) \\ &{} \qquad \wedge \forall i< |b| (\varPhi _{\psi ,\alpha }(\langle i \rangle *c) = b(i) + 1) \wedge b< |a| \\ &{}\qquad \wedge \forall i < |b| (a(\overline{b} i) = 0) \wedge a(b) = x+ 1 )] , \\ 0 &{}\quad \text {otherwise.} \end{array}\right. } \end{aligned}$$

Case 2 \(t \equiv \chi |\psi \):

$$\begin{aligned} \varPhi _{\chi |\psi ,\alpha }(\langle z \rangle *c) = {\left\{ \begin{array}{ll} x + 1 &{}\quad \text {for }x< |c|\text { such that} \\ &{} \qquad 0< \varPhi _{\chi ,\alpha }(\langle z \rangle *c) \wedge 0< \varPhi _{\psi ,\alpha }(\langle z \rangle *c) \\ &{} \qquad \wedge \exists a b< |c| [ \forall i< |a| (\varPhi _{\chi ,\alpha }(\langle i \rangle *c) = a(i) + 1) \\ &{} \qquad \wedge \forall i< |b| (\varPhi _{\psi ,\alpha }(\langle i \rangle *c) = b(i) + 1) \wedge \langle z \rangle *b< |a| \\ &{} \qquad \wedge \forall i < |b| (a(\langle z \rangle *\overline{b} i) = 0) \wedge a(\langle z \rangle *b) = x + 1 ) ] , \\ 0 &{}\quad \text {otherwise.} \end{array}\right. } \end{aligned}$$

Case 3 \(\phi \equiv \lambda u. t\):

Case 4 \(t \equiv \chi (s)\):

Case 5 \(\phi \equiv \mathrm {It}(\chi ,s)\):

Case 6 \(t \equiv f(t_0,\ldots ,t_{n-1})\) for function symbol f in \(\mathscr {L}(\mathbf {HA})\):

Remark 22

The following are proved by the induction on the construction of terms and functors, using Remark 19 for (3).

  1. 1.

    \( \mathrm {FV}(\varPhi _{t,\alpha }) = \mathrm {FV}(t) {\setminus } \{\alpha \} \) and \( \mathrm {FV}(\varPhi _{\phi ,\alpha }) = \mathrm {FV}(\phi ) {\setminus } \{\alpha \} , \)

  2. 2.

    \(\mathbf {EL}^*\) proves \( \varPhi _{t,\alpha } \in K^*\) and \( \varPhi _{\phi ,\alpha } \in K^*\), where

    $$\begin{aligned} \alpha \in K^*\mathrel {\Leftrightarrow }\alpha (0) = 0 \wedge \forall a b (0 < \alpha (a) \mathbin {\rightarrow }\alpha (a *b) = \alpha (a)) . \end{aligned}$$
  3. 3.

    \(\mathbf {EL}^*\) proves the following:

    $$\begin{aligned}&(\varPhi _{f(t_0,\ldots ,t_{n-1},\phi _0,\ldots ,\phi _{m-1}),\alpha }|\beta ){\downarrow }_1 \\&\quad \mathbin {\rightarrow }(\varPhi _{t_0,\alpha }|\beta ){\downarrow }_1 \wedge \cdots \wedge (\varPhi _{t_{n-1},\alpha }|\beta ){\downarrow }_1 \wedge (\varPhi _{\phi _0,\alpha }|\beta ){\downarrow }_1 \wedge \cdots \wedge (\varPhi _{\phi _{m-1},\alpha }|\beta ){\downarrow }_1, \end{aligned}$$

    where f is \(\text {-}(\text {-})\), \(\text {-}|\text {-}\), \(\lambda u. \text {-}\) for numerical variable u, the application operator \(\mathrm {Ap}\), the iterator \(\mathrm {It}\) or a function symbol of \(\mathscr {L}(\mathbf {HA})\).

Lemma 23

\(\mathbf {EL}^*\) proves the following:

  1. 1.

    \(\forall \beta ((\varPhi _{t,\alpha }|\beta ){\downarrow }_1 \mathbin {\leftrightarrow }(t[\alpha /\beta ]){\downarrow }_0) ,\)

  2. 2.

    \(\forall \beta ((\varPhi _{\phi ,\alpha }|\beta ){\downarrow }_1\mathbin {\leftrightarrow }(\phi [\alpha /\beta ]){\downarrow }_1) ,\)

  3. 3.

    \(\forall \beta [(t[\alpha /\beta ]){\downarrow }_0 \mathbin {\rightarrow }\forall z((\varPhi _{t,\alpha }|\beta )(z) = t[\alpha /\beta ])] ,\)

  4. 4.

    \(\forall \beta [(\phi [\alpha /\beta ]){\downarrow }_1 \mathbin {\rightarrow }\varPhi _{\phi ,\alpha }|\beta =_1 \phi [\alpha /\beta ]] .\)

Proof

This can be proved by the induction on the construction of terms and functors. \(\square \)

Now, we define functors \(\varLambda ^0 x. t\), \(\varLambda ^1 x. \phi \) \(\varLambda ^0 \alpha . t\) and \(\varLambda ^1\alpha . \phi \) as follows:

$$\begin{aligned}&\varLambda ^0 x. t \equiv \lambda x. t, \quad \varLambda ^1 x. \phi \equiv \varPhi _{\phi [x/\alpha (0)],\alpha }, \\&\varLambda ^0 \alpha . t \equiv \lambda u. \varPhi _{t,\alpha }(\langle 0 \rangle *u), \quad \varLambda ^1 \alpha . \phi \equiv \varPhi _{\phi ,\alpha }, \end{aligned}$$

where \(\alpha \not \in \mathrm {FV}(\phi )\) and \(u \not \in \mathrm {FV}(t)\).

Intuitively, the superscript of \(\varLambda \) denotes the type of value, and the variable follows \(\varLambda ^{\text {-}}\) indicate the type of argument.

Remark 24

Note that, since \(\varPhi _{t,\alpha }\) and \(\varPhi _{\phi ,\alpha }\) are functors in \(\mathscr {L}(\mathbf {EL})\), so are \(\varLambda ^1 x.\phi \), \(\varLambda ^0 \alpha . t\) and \(\varLambda ^1 \alpha . \phi \), and hence \((\varLambda ^1 x. \phi ){\downarrow }_1\), \((\varLambda ^0 \alpha . t){\downarrow }_0\) and \((\varLambda ^1 \alpha . \phi ){\downarrow }_1\), by Remark 19 (1).

We use abbreviations \(t \simeq _0 s\) and \(\phi \simeq _1 \chi \) defined by

$$\begin{aligned}&t \simeq _0 s \equiv t{\downarrow }_0 \vee s {\downarrow }_0 \mathbin {\rightarrow }t = s , \quad \phi \simeq _1 \chi \equiv \phi {\downarrow }_1 \vee \chi {\downarrow }_1 \mathbin {\rightarrow }\phi =_1 \chi . \end{aligned}$$

Lemma 25

The following are derivable in \(\mathbf {EL}^*\).

  1. 1.

    \((\varLambda ^0 x. t){\downarrow }_1 \wedge s{\downarrow }_0 \mathbin {\rightarrow }(\varLambda ^0 x. t) s = t[x/s] ,\)

  2. 2.

    \((\lambda u. s){\downarrow }_1 \mathbin {\rightarrow }(\varLambda ^1 x. \phi )|(\lambda u. s) \simeq _1\phi [x/s] ,\)

  3. 3.

    \(\chi {\downarrow }_1 \wedge (t[\alpha /\chi ]){\downarrow }_0 \mathbin {\rightarrow }(\varLambda ^0\alpha . t)(\chi ) = t[\alpha /\chi ] ,\)

  4. 4.

    \(\chi {\downarrow }_1 \mathbin {\rightarrow }(\varLambda ^1\alpha . \phi )|\chi \simeq _1\phi [\alpha /\chi ] ,\)

where \(u \not \in \mathrm {FV}(s)\).

Proof

This follows from Lemma 23 and the definitions. \(\square \)

Lemma 26

There exists a functor \(\phi _{{{\varvec{r}}}}\) in \(\mathscr {L}(\mathbf {EL}^*)\) such that \(\mathbf {EL}^*\) proves

$$\begin{aligned}&\phi _{{{\varvec{r}}}}{\downarrow }_1, \phi _{{{\varvec{r}}}}|\alpha |\beta |(\lambda u.0) \simeq \alpha \;\text { and}\; \phi _{{{\varvec{r}}}}|\alpha |\beta |(\lambda u. Sx) \simeq \beta |(\phi _{{{\varvec{r}}}}|\alpha |\beta |(\lambda u. x)|(\lambda u. x). \end{aligned}$$

Proof

Let \(\phi _0\), \(\psi _\mathrm{fix}\), \(\psi _\mathrm{pred}\) and \(\psi _\mathrm{d}\) as follows:

Then it is straightforward to show that

$$\begin{aligned} \phi _{{\varvec{r}}}\equiv \varLambda ^1 \alpha .\varLambda ^1 \beta . (\phi _\mathrm {fix} | \chi ) . \end{aligned}$$

satisfies the desired properties as in [9, Ch.9.3.8]. \(\square \)

One might think that the axiom

$$\begin{aligned} (\lambda u. t){\downarrow }_1 \mathbin {\leftrightarrow }\forall u (t{\downarrow }_0) \end{aligned}$$

should be included in \(\mathbf {EL}^*\) as an axiom. From the left to right follows from \(\mathrm {EAX}\) and \(\mathrm {STR}\), and the converse is actually derivable in \(\mathbf {EL}^*\).

Lemma 27

\(\mathbf {EL}^*\) proves that \( \forall u (t{\downarrow }_0) \mathbin {\rightarrow }(\lambda u. t){\downarrow }_1 . \)

Proof

Suppose that \( \forall u (t{\downarrow }_0) . \) Then, since

$$\begin{aligned} \forall u (t{\downarrow }_0 \mathbin {\rightarrow }(\varPhi _{t,\alpha }|\alpha ){\downarrow }_1 \wedge (\varPhi _{t,\alpha }|\alpha )(0) = t) \end{aligned}$$

by Lemma 23, we have \( \forall u \exists \gamma (\gamma =_1 \varPhi _{t,\alpha }|\alpha ) , \) by \(\mathrm {EAX}\). Given u, assume that \( \gamma =_1 \varPhi _{t,\alpha }|\alpha . \) Then \( G_1(\varPhi _{t,\alpha },\alpha ,\gamma ) , \) by \(\mathrm {CFA}\), and hence \( \exists v (0 < \varPhi _{t,\alpha }(\langle 0 \rangle *\overline{\alpha } v)) . \) Therefore \( \forall u \exists v (0 < \varPhi _{t,\alpha }(\langle 0 \rangle *\overline{\alpha } v)) , \) and hence there exists \(\delta \) such that

$$\begin{aligned} \forall u (0 < \varPhi _{t,\alpha }(\langle 0 \rangle *\overline{\alpha }(\delta (u)))) , \end{aligned}$$

by \(\mathrm {QF}\text {-}\mathrm {AC}\). Let . Then \( \forall u (\phi (u) = (\varPhi _{t,\alpha }|\alpha )(0)) , \) and hence \( \forall u (\phi (u) = t) . \) Therefore \( \exists \gamma \forall u (\gamma (u) = t) , \) and so \( (\lambda u. t){\downarrow }_1 , \) by \(\mathrm {EAX}\). \(\square \)

3.2 The interpretation \([\![\text {-}]\!] \) of \(\mathscr {L}(\mathbf {HA}^{\omega })\) into \(\mathscr {L}(\mathbf {EL}^*)\)

We use a slightly modified version \([\![\text {-}]\!] \) of the interpretation \([\![\text {-}]\!] _{\mathrm {ICF}^*}\) in [9, Ch.9.1.16]. The main difference between our interpretation \([\![\text {-}]\!] \) and \([\![\text {-}]\!] _{\mathrm {ICF}^*}\) is the interpretation of the type 0 terms. The former interprets them as type 0 terms and the latter interprets them as type 1 terms in \(\mathscr {L}(\mathbf {EL}^*)\). In [7, 2.6.2], a model \(\mathrm {ICF}[\mathscr {U}]\) of \(\mathbf {HA}^{\omega }\) is given in a similar way to \([\![\text {-}]\!] \).

For each type \(\sigma \) in \(\mathscr {L}(\mathbf {HA}^\omega )\), define a type \([\sigma ]\) in \(\mathscr {L}(\mathbf {EL}^*)\) and formulae \(x\in [\![0]\!] \) and \(\alpha \in [\![\sigma \rightarrow \tau ]\!] \) as follows:

$$\begin{aligned}&[0]\equiv 0; \quad [\rho \rightarrow \tau ]\equiv 1; \quad x\in [\![0]\!] \equiv x=x; \quad \alpha \in [\![0\rightarrow 0]\!] \equiv \forall x(\alpha (x)=\alpha (x));\\&\alpha \in [\![\rho \rightarrow \tau ]\!] \equiv {\left\{ \begin{array}{ll} \forall y(\alpha |\lambda v. y{\downarrow }\wedge \alpha |\lambda v. y\in [\![\tau ]\!] ) &{}\quad \text {if }\rho =0\quad \text { and }\quad \tau \ne 0; \\ \forall \beta (\beta \in [\![\rho ]\!] \rightarrow \alpha (\beta ){\downarrow }) &{}\quad \text {if }\rho \ne 0\quad \text { and }\quad \tau =0; \\ \forall \beta (\beta \in [\![\rho ]\!] \rightarrow \alpha |\beta {\downarrow }\wedge \alpha |\beta \in [\![\tau ]\!] ) &{}\quad \text {if }\rho \ne 0\quad \text { and }\quad \tau \ne 0. \\ \end{array}\right. } \end{aligned}$$

We fix a bijection \([\![\text {-}]\!] \) between the variables of \(\mathscr {L}(\mathbf {HA}^\omega )\) and the variables in \(\mathscr {L}(\mathbf {EL}^*)\) such that \([\![x^\sigma ]\!] \) is a variable of type \([\sigma ]\) in \(\mathscr {L}(\mathbf {EL}^*)\) for each variable \(x^\sigma \) in \(\mathscr {L}(\mathbf {HA}^\omega )\). Note that for each variable a of type 0 or 1 in \(\mathscr {L}(\mathbf {HA}^\omega )\), the variable \([\![a]\!] \) is a variable of type 0 or 1 in \(\mathscr {L}(\mathbf {EL}^*)\), respectively.

To define \([\![c]\!] \) for each constant c in \(\mathscr {L}(\mathbf {HA}^\omega )\), we use \(\varLambda \) operators which are defined in Sect. 3.1. In what follows, we write \(\varLambda \text {-}\varLambda \text {-}. \text {-}\) for \(\varLambda \text {-}.(\varLambda \text {-}. \text {-})\). Then \([\![c]\!] \) is defined as follows:

$$\begin{aligned}{}[\![0]\!]&\equiv 0; \quad [\![S]\!] =S;\\ [\![{{\varvec{k}}}^{\sigma ,\tau }]\!]&= {\left\{ \begin{array}{ll} \varLambda ^{1}x\varLambda ^{0}y. x &{}\quad \text {if }\sigma \equiv \tau \equiv 0;\\ \varLambda ^1x\varLambda ^0\beta . x &{}\quad \text {if }\sigma \equiv 0\quad \text { and }\quad \tau \not \equiv 0 \\ \varLambda ^1\alpha \varLambda ^1y. \alpha &{}\quad \text {if }\sigma \not \equiv 0\quad \text { and }\quad \tau \equiv 0 \\ \varLambda ^1\alpha \varLambda ^1\beta . \alpha &{}\quad \text {if }\sigma \not \equiv 0\quad \text { and }\quad \tau \not \equiv 0 \end{array}\right. } \\ [\![{{\varvec{s}}}^{\rho ,\sigma ,\tau }]\!]&= {\left\{ \begin{array}{ll} \varLambda ^1\alpha \varLambda ^1\beta \varLambda ^0 z.(\alpha |(\lambda v. z))(\beta (z)) &{} \quad \text {if }\sigma \equiv 0\quad \text { and }\quad \tau \equiv 0;\\ \varLambda ^1\alpha \varLambda ^1\beta \varLambda ^1 z.(\alpha |\lambda v. z)|(\beta |\lambda v. z) &{} \quad \text {if }\sigma \equiv 0\quad \text { and }\quad \tau \equiv 1;\\ \varLambda ^1\alpha \varLambda ^1\beta \varLambda ^0\gamma .(\alpha |\gamma )(\beta |\gamma ) &{} \quad \text {if }\sigma \equiv 1\quad \text { and }\quad \tau \equiv 0;\\ \varLambda ^1\alpha \varLambda ^1\beta \varLambda ^1\gamma .(\alpha |\gamma )|(\beta |\gamma ) &{} \quad \text {if }\sigma \equiv 1\quad \text { and }\quad \tau \equiv 1; \end{array}\right. }\\ [\![{{\varvec{r}}}^{\sigma }]\!]&= {\left\{ \begin{array}{ll} \varLambda ^{1}x \varLambda ^{1}\beta \varLambda ^{0}z. {{\varvec{r}}}(x,\beta ,z) &{}\quad \text {if }[\sigma ]\equiv 0; \\ \varLambda ^{1}\alpha \varLambda ^{1}\beta \varLambda ^{1}z. \phi _{{{\varvec{r}}}}|\alpha |\beta |\lambda v. z &{}\quad \text {if }[\sigma ]\equiv 1, \end{array}\right. } \end{aligned}$$

where \({{\varvec{r}}}\) is the recursor in \(\mathscr {L}(\mathbf {EL}^*)\), and where \(\phi _{{{\varvec{r}}}}\) is a functor defined in Lemma 26. By Remark 24, \(\mathbf {EL}^*\) proves \([\![c^\sigma ]\!] {\downarrow }_{[\sigma ]}\) for each constant c with type \(\sigma \) in \(\mathscr {L}(\mathbf {HA}^{\omega })\). We use the following notations for a functor \(\phi \) such that \(\phi \in [\![\sigma \rightarrow \tau ]\!] \) and a variable \(a\in [\![\sigma ]\!] \) in \(\mathscr {L}(\mathbf {EL})\):

$$\begin{aligned} \phi \cdot a\equiv {\left\{ \begin{array}{ll} \phi (a) &{}\quad \text {if }\sigma \equiv 0\quad \text { and }\quad \tau \equiv 0;\\ \phi |(\lambda x. a) &{}\quad \text {if }\sigma \equiv 0\quad \text { and }\quad \tau \not \equiv 0; \\ \phi (a) &{}\quad \text {if }\sigma \not \equiv 0\quad \text { and }\quad \tau \equiv 0; \\ \phi |a &{}\quad \text {if }\sigma \equiv 0\quad \text { and }\quad \tau \not \equiv 0. \end{array}\right. } \end{aligned}$$

Note that \(\phi (a)\) in the first case denotes usual application of a functor \(\phi \) to a term a, i.e., \(\mathrm {Ap}(\phi ,a)\), but \(\phi (a)\) in the third case denotes an application of the partial function \(\text {-}(\text {-})\) in \(\mathscr {L}(\mathbf {EL}^*)\).

We define \([\![ts]\!] \) by \([\![ts]\!] =[\![t]\!] {\cdot }[\![s]\!] \). By Lemma 25, \(\mathbf {EL}^*\) proves the following:

$$\begin{aligned}&[\![0]\!] \equiv 0; \quad [\![Sx^0]\!] =S[\![x]\!] ; \\&[\![x^\sigma ]\!] \in [\![\sigma ]\!] \wedge [\![y^\tau ]\!] \in [\![\tau ]\!] \rightarrow [\![{{\varvec{k}}}^{\sigma ,\tau }x y]\!] =[\![x]\!] ; \\&[\![x^{\rho \rightarrow (\sigma \rightarrow \tau )}]\!] \in [\![\rho \rightarrow (\sigma \rightarrow \tau )]\!] \wedge [\![y^{\rho \rightarrow \sigma }]\!] \in [\![\rho \rightarrow \sigma ]\!] \wedge [\![z^{\rho }]\!] \in {[\![\rho ]\!] }\\&\quad \rightarrow [\![{{\varvec{s}}}^{\rho ,\sigma ,\tau }x^{\rho \rightarrow (\sigma \rightarrow \tau )}y^{\rho \rightarrow \sigma }z^{\rho }]\!] =[\![xz(yz)]\!] ; \\&[\![x^{\sigma }]\!] \in [\![\sigma ]\!] \wedge [\![y^{\sigma \rightarrow (0\rightarrow \sigma )}]\!] \in [\![\sigma \rightarrow (0\rightarrow \sigma )]\!] \\&\quad \rightarrow [\![{{\varvec{r}}}^{\sigma }x^{\sigma }y^{\sigma \rightarrow (0\rightarrow \sigma )}0]\!] =[\![x]\!] \wedge [\![{{\varvec{r}}}^{\sigma }x^{\sigma }y^{\sigma \rightarrow (0\rightarrow \sigma )}({S}z^{0})]\!] = [\![y({{\varvec{r}}}^{\sigma }xyz)z]\!] . \end{aligned}$$

Furthermore, we can prove the following by induction on the construction of a term: For each term \(t^{\rho }\in \mathscr {L}(\mathbf {HA}^{\omega })\) whose all free variables are listed in \(x_0^{\sigma _0},\ldots ,x_{i-1}^{\sigma _i}\), \(\alpha _{0}^{\tau _0},\ldots ,\alpha _{j-1}^{\tau _{j-1}}\), \(\mathbf {EL}^*\) proves that

$$\begin{aligned} \bigwedge _{k<i} [\![x_k]\!] \in [\![\sigma _k]\!] \wedge \bigwedge _{k<j}[\![\alpha _k]\!] \in [\![\tau _k]\!] \rightarrow [\![t]\!] {\downarrow }_{[\rho ]}\wedge [\![t]\!] \in [\![\sigma ]\!] . \end{aligned}$$

For a formula A in \(\mathscr {L}(\mathbf {HA}^\omega )\), a formula \([\![A]\!] \) in \(\mathscr {L}(\mathbf {EL}^*)\) is defined as follows:

$$\begin{aligned}{}[\![t=_\sigma s]\!]&\equiv {\left\{ \begin{array}{ll} [\![t]\!] =[\![s]\!] &{}\quad \text {if }[\sigma ]\equiv 0;\\ \forall n([\![t]\!] (n)=[\![s]\!] (n)) &{}\quad \text {if }[\sigma ]\equiv 1; \end{array}\right. } \quad [\![\bot ]\!] \equiv \bot ; \\ [\![A\circ B]\!]&\equiv [\![A]\!] \circ [\![B]\!] ,\text { where }\circ \in \{ \wedge ,\vee ,\rightarrow \};\\ [\![\forall x^\sigma A]\!]&\equiv \forall x^{[\sigma ]}(x\in [\![\sigma ]\!] \rightarrow [\![A]\!] ); \quad [\![\exists x^\sigma A]\!] \equiv \exists x^{[\sigma ]}(x\in [\![\sigma ]\!] \wedge [\![A]\!] ). \end{aligned}$$

We often use the abbreviations \(\forall x\in [\![\sigma ]\!] A\) and \(\exists x\in [\![\sigma ]\!] A\) for \(\forall x^{[\sigma ]}(x\in [\![\sigma ]\!] \rightarrow A)\) and \(\exists x^{[\sigma ]}(x\in [\![\sigma ]\!] \wedge A)\), respectively.

A schema in \(\mathscr {L}(\mathbf {EL})\) or \(\mathscr {L}(\mathbf {HA}^\omega )\) is a schema whose terms and quantifiers are all in \(\mathscr {L}(\mathbf {EL})\) or \(\mathscr {L}(\mathbf {HA}^\omega )\), respectively. Note that the schemata \(\mathrm {BI}_\mathrm{M}\), \(\mathrm {C}\text {-}\mathrm {N}\) and \(\mathrm {MP}\) are in \(\mathscr {L}(\mathbf {EL})\) and that \(\mathrm {AC}\) and \(\mathrm {DC}\) are in \(\mathscr {L}(\mathbf {HA}^{\omega })\). The standard translation \(\iota \) from \(\mathscr {L}(\mathbf {EL})\) into \(\mathscr {L}(\mathbf {HA}^\omega )\) can be extended on the schemata in \(\mathscr {L}(\mathbf {EL})\) in a natural way. For each term t and schema \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {EL})\), assign a term \((t)_E\) and a schema \(({\varvec{\alpha }})_E\) in \(\mathscr {L}(\mathbf {EL}^*)\) as follows:

$$\begin{aligned} {\begin{array}{ll} (c)_E\equiv [\![\iota (c)]\!] &{}\quad (x^i)_E\equiv [\![\iota (x^i)]\!] ; \\ (ft_1\ldots t_{n})_E\equiv f(t_1)_E\ldots (t_{n})_E; &{}\quad ({{\varvec{r}}}(t_1,t_2,t_3))_E\equiv {{\varvec{r}}}(t_1)_E(t_2)_E(t_3)_E;\\ (a^1(t^0))_E\equiv (a)_E((t)_E); &{}\quad (\lambda x. t)_E\equiv \lambda (x)_E. (t)_E; \\ (s=_0t)_E\equiv (s)_E=_0(t)_E; \quad (\bot )_E\equiv \bot ; &{}\quad ({\varvec{\nu }}(t_1,\ldots ,t_n))_E\equiv {\varvec{\nu }}((t_1)_E, \ldots , (t_n)_E); \\ ({\varvec{\beta }}_1\circ {\varvec{\beta }}_2)_E\equiv ({\varvec{\beta }}_1)_E\circ ({\varvec{\beta }}_2)_E; &{}\quad (Qx^i{\varvec{\beta }})_E\equiv Q(x)_E({\varvec{\beta }})_E,\end{array}} \end{aligned}$$

for \(\circ \in \{\wedge ,\vee ,\rightarrow \}\) and \(Q\in \{ \exists ,\forall \}\). Note that the interpretation \([\![\text {-}]\!] \) satisfies the following properties (P0)–(P5).

  1. (P0)

    For each variable \(x^\sigma \in \mathscr {L}(\mathbf {HA}^\omega )\), \([\![x^\sigma ]\!] \) is a variable of type \([\sigma ]\) in \(\mathscr {L}(\mathbf {EL}^*)\);

  2. (P1)

    \([\![\iota (t)]\!] \equiv (t)_E\);

  3. (P2)

    \([\![t^0 = s^0]\!] \equiv [\![t^0]\!] = [\![s^0]\!] \);

  4. (P3)

    \(\mathbf {EL}^*\vdash [\![A\circ B]\!] \leftrightarrow [\![A]\!] \circ [\![B]\!] \) for \(\circ \in \{ \wedge ,\vee ,\rightarrow \}\);

  5. (P4)

    \(\mathbf {EL}^*\vdash [\![Q u^\sigma A]\!] \leftrightarrow \forall [\![u^\sigma ]\!] [\![A]\!] \), for \(Q\in \{ \exists , \forall \}\) and \(\sigma \equiv 0\) or 1;

  6. (P5)

    \(\mathbf {EL}^*\vdash [\![A [u^\sigma / t^\sigma ]]\!] \leftrightarrow [\![A]\!] [ [\![u^\sigma ]\!] / [\![t^\sigma ]\!] ]\).

Remark 28

For the property (P4), note that \(\mathbf {EL}^*\vdash x^0\in [\![0]\!] \wedge a^1\in [\![1]\!] \). To show the property (P5), we first prove \([\![t[x^\sigma /s^\sigma ]]\!] \equiv [\![t]\!] [[\![x^\sigma ]\!] /[\![s^\sigma ]\!] ]\) by induction on the construction of t, and then prove (P5), by the induction on the construction of A.

The following propositions show that, for any schema \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {EL})\), any instance \({\varvec{\alpha }}[\vec {\nu }/\vec {B}]\) of \({\varvec{\alpha }}\) as a schema in \(\mathscr {L}(\mathbf {HA}^{\omega })\) with \(\vec {B}\) in \(\mathscr {L}(\mathbf {HA}^{\omega })\) is interpreted into an instance of \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {EL}^*)\).

Proposition 29

Let \({\varvec{\alpha }}[{\varvec{\nu }}_1,\ldots {\varvec{\nu }}_k]\) be a schema with exactly the displayed place holders in \(\mathscr {L}(\mathbf {EL})\) and let \(B_1, \ldots , B_k\) be formulae in \(\mathscr {L}(\mathbf {HA}^\omega )\). Then

$$\begin{aligned}&\mathbf {EL}^* \vdash {[\![\iota ({\varvec{\alpha }})[{\varvec{\nu }}_1/\lambda \vec {u_1}. B_1, \ldots , {\varvec{\nu }}_k/\lambda \vec {u_k}. B_k]]\!] } \\&\quad \leftrightarrow {({\varvec{\alpha }})_E[{\varvec{\nu }}_1/\lambda \vec {[\![u_1]\!] }. [\![B_1]\!] , \ldots , {\varvec{\nu }}_k/\lambda \vec {[\![u_k]\!] }. [\![B_k]\!] ]}. \end{aligned}$$

Proof

We show by induction on the complexity of \({\varvec{\alpha }}\). It is clear if \({\varvec{\alpha }}\) is \(\bot \). If \({\varvec{\alpha }}\) is an atomic formula \(P\equiv s=_0t\), then s and t are terms in \(\mathscr {L}(\mathbf {EL})\), and hence \([\![\iota (s=_0t)]\!] \equiv [\![\iota (s)]\!] =_0[\![\iota (t)]\!] \equiv (s)_E=_0(t)_E\equiv (s=_0t)_E\), by (P1), (P2) and the definition of \((\text {-})_E\). Let \({\varvec{\alpha }} \equiv {\varvec{\nu }}_i(t_1, \ldots , t_n)\) for some \(i=0,\ldots , k\) and \(\vec {u_i}\equiv v_1^{\sigma _1},\ldots ,v_n^{\sigma _n}\). Then

$$\begin{aligned} {[\![B_i [v_1^{\sigma _1} / \iota (t_1), \ldots , v_n^{\sigma _n} / \iota (t_n)]]\!] }&\equiv {[\![B_i]\!] [[\![v_1^{\sigma _1}]\!] /[\![\iota (t_1)]\!] , \ldots , [\![v_n^{\sigma _n}]\!] /[\![\iota (t_n)]\!] ]} \\&\equiv {[\![B_i]\!] [[\![v_1^{\sigma _1}]\!] /(t_1)_E, \ldots , [\![v_n^{\sigma _n}]\!] /(t_n)_E]}, \end{aligned}$$

by (P5) and (P1). It is straightforward to see the induction steps for the connectives by (P3) and (P4). \(\square \)

For a schema \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {EL})\), the set \(\mathrm {FV}({\varvec{\alpha }})\) of free variables in \({\varvec{\alpha }}\) is defined in the usual way. A schema is closed if \(\mathrm {FV}({\varvec{\alpha }})=\emptyset \).

Proposition 30

Let \({\varvec{\alpha }}\) be a closed schema in \(\mathscr {L}(\mathbf {EL})\) with place holders \({\varvec{\nu }}_1,\ldots , {\varvec{\nu }}_k\), and let \(B_1,\ldots , B_k\) be formulae in \(\mathscr {L}(\mathbf {HA}^\omega )\). Then

$$\begin{aligned} \mathbf {EL}^*\vdash [\![\iota ({\varvec{\alpha }})[B_1,\ldots , B_k]]\!] \leftrightarrow {\varvec{\alpha }}[[\![B_1]\!] ,\ldots , [\![B_k]\!] ]. \end{aligned}$$

Proof

Since, for any closed schema \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {EL})\) and formulae \(\vec {C}\) in \(\mathscr {L}(\mathbf {EL}^*)\), \(({\varvec{\alpha }})_E[\vec {C}]\) is obtained from \({\varvec{\alpha }}[\vec {C}]\) by renaming of bound variables in \(\mathbf {\alpha }\), we have \(\mathbf {EL}^*\vdash ({\varvec{\alpha }})_E[\vec {C}]\leftrightarrow {\varvec{\alpha }}[\vec {C}]\). Then it follows from Proposition 29. \(\square \)

The above proposition shows that, for each schema \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {EL})\), each instance of \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {HA}^{\omega })\) is interpreted by \([\![\text {-}]\!] \) as an instance of the same schema \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {EL}^*)\). In particular, we have the following.

Corollary 31

For each instance A of \(\mathrm {BI}_\mathrm{M}\), \(\mathrm {C}\text {-}\mathrm {N}\) or \(\mathrm {MP}\) in \(\mathscr {L}(\mathbf {HA}^\omega )\), there exists an instance B of \(\mathrm {BI}_\mathrm{M}\), \(\mathrm {C}\text {-}\mathrm {N}\) or \(\mathrm {MP}\) in \(\mathscr {L}(\mathbf {EL}^*)\), respectively, such that

$$\begin{aligned} \mathbf {EL}^*\vdash [\![A]\!] \leftrightarrow B. \end{aligned}$$

Proof

Let a schema \({\varvec{\alpha }}\) be \(\mathrm {BI}_\mathrm{M}\), \(\mathrm {C}\text {-}\mathrm {N}\) or \(\mathrm {MP}\) in \(\mathscr {L}(\mathbf {EL})\). Then, since \({\varvec{\alpha }}\) is closed, \(\iota ({\varvec{\alpha }})\) is a closed schema in \(\mathscr {L}(\mathbf {HA}^\omega )\) corresponding to \(\mathrm {BI}_\mathrm{M}\), \(\mathrm {C}\text {-}\mathrm {N}\) or \(\mathrm {MP}\). \(\square \)

Note that, although we have used the particular interpretation \([\![\text {-}]\!] \), we can prove Proposition 30 for any interpretation with the properties (P0)–(P5).

The classes \(\varDelta _0\), \(\varSigma _n\) and \(\varPi _n\) of formulae in \(\mathscr {L}(\mathbf {HA})\) are naturally extended into ones of formulae in \(\mathscr {L}(\mathbf {EL})\), which are often written \(\varDelta ^0_0\), \(\varSigma ^0_n\) and \(\varPi ^0_n\) in the literature. A formula A in \(\mathscr {L}(\mathbf {EL})\) is almost negative if it is built up from formulae of the form \(\exists x^{\sigma }B\) with B in \(\varDelta _0\) in \(\mathscr {L}(\mathbf {EL})\) (not B in \(\mathscr {L}(\mathbf {EL}^*)\)) by means of \(\wedge \), \(\rightarrow \) and \(\forall x^\sigma \) for \(\sigma \equiv 0\) or 1.

Troelstra’s generalized continuity principle (\(\mathrm {GC}\), cf. [7, 3.3.9 Definition]) is as follows:

$$\begin{aligned} \forall \alpha (B(\alpha )\rightarrow \exists \beta C(\alpha ,\beta ))\rightarrow \exists \gamma \forall \alpha (B(\alpha )\rightarrow \gamma |\alpha {\downarrow }\wedge C(\alpha ,\gamma |\alpha )), \end{aligned}$$

where B is almost negative (cf. [7, 3.3.9] or [9, Ch.9.6.9]). The following proposition is well known, and we omit a proof.

Proposition 32

\(\mathbf {EL}^*+\mathrm {GC}\vdash \mathrm {C}\text {-}\mathrm {N}\).

For each type \(\sigma \) in \(\mathscr {L}(\mathbf {HA}^\omega )\), we use the following functors in \(\mathscr {L}(\mathbf {EL})\):

$$\begin{aligned}&\phi _{\sigma }\equiv {\left\{ \begin{array}{ll} \varLambda ^0\alpha . \alpha (0) &{}\quad \text {if }\sigma \equiv 0;\\ \varLambda ^1\alpha . \alpha &{}\quad \text {otherwise}; \end{array}\right. }&\chi _{\sigma }\equiv {\left\{ \begin{array}{ll} \varLambda ^1x.(\lambda y. x) &{}\quad \text {if }\sigma \equiv 0,\\ \varLambda ^1\alpha . \alpha &{} \quad \text {otherwise}. \end{array}\right. } \end{aligned}$$

By Remark 24, we have \(\phi _{\sigma }{\downarrow }_1\) and \(\chi _{\sigma }{\downarrow }_1\) for any \(\sigma \). Furthermore, we have \(\phi _{\sigma }(\alpha )=\alpha (0)\) for \(\sigma \equiv 0\) and \(\phi _{\sigma }|\alpha =\alpha \) for \(\sigma \not \equiv 0\), and so \(\phi _{0}\in [\![\tau \rightarrow 0]\!] \) for any \(\tau \) with \(\tau \not \equiv 0\) and \(\phi _{\sigma }\in [\![\sigma \rightarrow \sigma ]\!] \) for any \(\sigma \not \equiv 0\). We also have \(\chi _{0}(x)=\lambda y. x\) and \(\chi _{\sigma }|\alpha =\alpha \) for \(\sigma \not \equiv 0\) and so \(\chi _{0}\in [\![0\rightarrow 1]\!] \) and \(\chi _{\sigma }\in [\![\sigma \rightarrow \sigma ]\!] \) for \(\sigma \not \equiv 0\).

Hence, using the notation \(\beta {\cdot }a\) used to define \([\![ts]\!] \), we have the following:

$$\begin{aligned} \phi _{\sigma }{\cdot }\alpha = {\left\{ \begin{array}{ll} \alpha (0) &{}\quad \text {if }\sigma \equiv 0;\\ \alpha &{}\quad \text {otherwise}; \end{array}\right. }\quad \chi _{\sigma }{\cdot }a^{[\sigma ]}= {\left\{ \begin{array}{ll} \lambda y. a &{}\quad \text {if }\sigma \equiv 0; \\ a &{} \quad \text {otherwise}. \end{array}\right. } \end{aligned}$$

Note that \(\phi _{\sigma }{\cdot }\alpha \) has type \([\sigma ]\) but \(\chi _{\sigma }{\cdot }a^{[\sigma ]}\) has always type 1.

Lemma 33

For any \(\sigma \) with \(\sigma \not \equiv 0\), there is an almost negative formula \(A_{\sigma }(\alpha )\) such that \(\mathbf {EL}^*\) proves \(\forall \alpha (\alpha \in [\![\sigma ]\!] \leftrightarrow A_{\sigma }(\alpha ))\).

Proof

We prove by induction on types.

For \(\sigma \equiv 0\rightarrow 0\), \(A_{1}(\alpha )\equiv \forall x(\alpha (x)=\alpha (x))\) has the desired property.

Since the other cases can be proved in a similar way, we only prove the case with \(\sigma \equiv \rho \rightarrow \tau \) and for some \(\rho \not \equiv 0\) and \(\tau \not \equiv 0\). Assume that \(A_{\rho }(\alpha )\) and \(A_{\tau }(\alpha )\) are almost negative and that \(\mathbf {EL}^*\) proves

$$\begin{aligned} \forall \alpha (\alpha \in [\![\rho ]\!] \leftrightarrow A_{\rho }(\alpha )) \quad \text {and} \quad \forall \alpha (\alpha \in [\![\tau ]\!] \leftrightarrow A_{\rho }(\tau )). \end{aligned}$$

By Remark 19 (2), \(\alpha |\beta {\downarrow }\) is equivalent to \(\forall u\exists v(\alpha (\langle u\rangle *\overline{\beta }v)>0)\). Then

$$\begin{aligned}&\alpha \in [\![\rho \rightarrow \tau ]\!] \\&\quad \leftrightarrow \forall \beta (\beta \in [\![\rho ]\!] \rightarrow \alpha |\beta {\downarrow }\wedge \alpha |\beta \in [\![\tau ]\!] ) \\&\quad \leftrightarrow \forall \beta (\beta \in [\![\rho ]\!] \rightarrow \forall x\exists y(\alpha (\langle x\rangle *\overline{\beta }y)>0)\wedge \forall \gamma (\forall x((\alpha |\beta )(x)=\gamma (x))\\&\quad \rightarrow \gamma \in [\![\tau ]\!] )) \\&\quad \leftrightarrow \forall \beta (\beta \in [\![\rho ]\!] \rightarrow \forall x\exists y(\alpha (\langle x\rangle *\overline{\beta }y)>0)\wedge \forall \gamma (G_1(\alpha ,\beta ,\gamma )\rightarrow \gamma \in [\![\tau ]\!] )) \\&\quad \leftrightarrow \forall \beta (A_{\rho }(\beta )\rightarrow \forall x\exists y(\alpha (\langle x\rangle *\overline{\beta }y)>0)\wedge \forall \gamma (G_1(\alpha ,\beta ,\gamma )\rightarrow A_{\tau }(\gamma ))), \end{aligned}$$

and so we can take the almost negative formula in the last line as \(A_{\rho \rightarrow \tau }(\alpha )\). \(\square \)

The above lemma shows that for any \(\alpha \), \(\mathbf {EL}^*\) proves that \(\phi _{\sigma }{\cdot }\alpha \in [\![\sigma ]\!] \) is equivalent to some almost negative formula in \(\mathscr {L}(\mathbf {EL})\), since \(\phi _{\sigma }{\cdot }\alpha =\alpha (0)\) and so \(\phi _{\alpha }{\cdot }\alpha \in [\![0]\!] \leftrightarrow \alpha (0)=\alpha (0)\) for \(\sigma \equiv 0\), and \(\phi _{\sigma }{\cdot }\alpha =\alpha \) for \(\sigma \not \equiv 0\) and so \(\phi _{\sigma }{\cdot }\alpha \in [\![\sigma ]\!] \leftrightarrow A_{\sigma }(\alpha )\).

Hence the interpretation \([\![\text {-}]\!] \) also satisfies the following properties:

  1. (P6)

    \(\phi _{\sigma }{\cdot }\alpha \in [\![\sigma ]\!] \) is equivalent to an almost negative formula in \(\mathscr {L}(\mathbf {EL})\);

  2. (P7)

    \(\mathbf {EL}^*\vdash [\![\forall a^\sigma A]\!] \leftrightarrow (\forall a\in [\![\sigma ]\!] )[\![A]\!] \) and \(\mathbf {EL}^*\vdash [\![\exists a^{\sigma } A]\!] \leftrightarrow (\exists a\in [\![\sigma ]\!] )[\![A]\!] \);

  3. (P8)

    \(\mathbf {EL}^* \vdash \forall a \in [\![ \sigma ]\!] (\phi _\sigma {\cdot }(\chi _\sigma {\cdot }a) = a)\);

  4. (P9)

    \(\mathbf {EL}^* \vdash \forall \alpha [ {\forall a \in [\![\sigma ]\!] ({\alpha |(\chi _\sigma (a))}{\downarrow }_1 \wedge \phi _\tau {\cdot }(\alpha |(\chi _\sigma {\cdot }a)) \in [\![ \tau ]\!] )} \rightarrow \exists \beta \in [\![ \sigma \rightarrow \tau ]\!] \forall a\in [\![\sigma ]\!] (\beta {\cdot }a = \phi _\tau {\cdot }(\alpha |(\chi _\sigma {\cdot }a))) ]\).

Remark 34

To prove the property (P9), we have to consider four cases depending on types \(\sigma \) and \(\tau \). If \(\sigma \equiv \tau \equiv 0\), the assumption

$$\begin{aligned} \forall a\in [\![\sigma ]\!] ({\alpha |(\chi _\sigma (a))}{\downarrow }_1 \wedge \phi _\tau {\cdot }(\alpha |(\chi _\sigma (a))) \in [\![ \tau ]\!] ) \end{aligned}$$

implies that \(\forall a\in [\![\sigma ]\!] [\psi {\cdot }a=\phi _{\tau }{\cdot }(\alpha |(\chi _{\sigma }{\cdot }a))]\) for \(\psi \equiv \varLambda ^0x. \alpha {|}(\chi _{\sigma }(x))(0)\). Other cases are proved in a similar way.

Proposition 35

For each instance A of \(\mathrm {AC}_{\sigma ,\tau }\) in \(\mathscr {L}(\mathbf {HA}^\omega )\),

$$\begin{aligned} \mathbf {EL}^* + \mathrm {GC}\vdash [\![ A ]\!] . \end{aligned}$$

Proof

Let

$$\begin{aligned} {\forall x^\sigma \exists y^\tau B(x,y)} \rightarrow {\exists z^{\sigma \rightarrow \tau } \forall x^\sigma B(x,zx)} \end{aligned}$$

be an instance of \(\mathrm {AC}_{\sigma ,\tau }\), and suppose \((\forall a \in [\![ \sigma ]\!] ) (\exists b \in [\![ \tau ]\!] ) [\![ B ]\!] (a,b)\) for \([\![x]\!] =a\) and \([\![y]\!] =b\). Then we have

$$\begin{aligned} \forall \alpha [ {\phi _\sigma {\cdot }\alpha \in [\![ \sigma ]\!] } \rightarrow \exists b(\phi _\tau {\cdot }(\chi _\tau {\cdot }b) \in [\![\tau ]\!] \wedge [\![ B ]\!] (\phi _\sigma {\cdot }\alpha ,\phi _\tau {\cdot }(\chi _\tau {\cdot }b)))], \end{aligned}$$

by (P8). Since \(\forall b^{[\tau ]}(\chi _{\tau }{\cdot }b{\downarrow }_1)\), we have

$$\begin{aligned} \forall \alpha [ {\phi _\sigma {\cdot }\alpha \in [\![ \sigma ]\!] } \rightarrow \exists \beta (\phi _\tau {\cdot }\beta \in [\![ \tau ]\!] \wedge [\![ B ]\!] (\phi _\sigma {\cdot }\alpha ,\phi _\tau {\cdot }\beta ))] . \end{aligned}$$

Since \(\phi _\sigma {\cdot }\alpha \in [\![\sigma ]\!] \) is almost negative by (P6), we have \(\psi _0\) such that \(\psi _0{\downarrow }_1\) and

$$\begin{aligned} \forall \alpha [ {\phi _\sigma {\cdot }\alpha \in [\![ \sigma ]\!] } \rightarrow {{\psi _0|\alpha }{\downarrow }\wedge \phi _\tau {\cdot }(\psi _0|\alpha ) \in [\![ \tau ]\!] \wedge [\![B]\!] (\phi _\sigma {\cdot }\alpha ,\phi _\tau {\cdot }(\psi _0|\alpha ))} ], \end{aligned}$$

by \(\mathrm {GC}\). Therefore

$$\begin{aligned}&\forall a \in [\![ \sigma ]\!] [ {\phi _\sigma {\cdot }(\chi _\sigma {\cdot }a) \in [\![ \sigma ]\!] } \\&\quad \rightarrow {\psi _0|(\chi _\sigma {\cdot }a)}{\downarrow }\wedge \phi _\tau |(\psi _0|(\chi _\sigma {\cdot }a)) \in [\![ \tau ]\!] \wedge [\![ B ]\!] (\phi _\sigma {\cdot }(\chi _\sigma {\cdot }a),\phi _\tau {\cdot }(\psi _0|(\chi _\sigma {\cdot }a))) ] , \end{aligned}$$

and so

$$\begin{aligned} \forall a\in [\![ \sigma ]\!] [ {\psi _0|(\chi _\sigma {\cdot }a)}{\downarrow }\wedge \phi _\tau {\cdot }(\psi _0|(\chi _\sigma {\cdot }a)) \in [\![ \tau ]\!] \wedge [\![B]\!] (a,\phi _\tau {\cdot }(\psi _0|(\chi _\sigma {\cdot }a))) ] , \end{aligned}$$

by (P8). Take \(\psi _1\equiv \varLambda ^{[\tau ]}a. \phi _{\tau }\cdot (\psi _0|(\chi _{\sigma }\cdot a))\). Then \(\psi _1{\downarrow }_1\) by \(\forall \alpha \in [\![\sigma ]\!] (\psi _1|(\chi _{\sigma }{\cdot }\alpha ){\downarrow }_1)\) and by \(\forall \delta ((\phi _{\sigma }{\cdot }\delta ){\downarrow }_{[\sigma ]})\). Hence we have \(\psi _1\in [\![\sigma \rightarrow \tau ]\!] \wedge (\forall z\in [\![\sigma ]\!] )[\![B]\!] (a,\psi _1{\cdot }a)\), which implies

$$\begin{aligned} (\exists \beta \in [\![ \sigma \rightarrow \tau ]\!] ) (\forall a \in [\![ \sigma ]\!] ) [\![ B ]\!] (a,\beta {\cdot }a) , \end{aligned}$$

by (P9). Note that, since \(\beta {\cdot }a=[\![z^{\sigma \rightarrow \tau }x^{\sigma }]\!] [[\![z]\!] /\beta , [\![x]\!] /a]\), this is equivalent to

$$\begin{aligned}{}[\![\exists z^{\sigma \rightarrow \tau }\forall x^\sigma B(x, zx)]\!] , \end{aligned}$$

in \(\mathbf {EL}^*\) by (P5) and (P7). The rest of the proof is easy by (P3) and (P7). \(\square \)

Proposition 36

For each instance A of \(\mathrm {DC}_\sigma \) in \(\mathscr {L}(\mathbf {HA}^\omega )\),

$$\begin{aligned} \mathbf {EL}^*+ \mathrm {GC}\vdash [\![ A ]\!] . \end{aligned}$$

Proof

Let

$$\begin{aligned} \forall x^\sigma \exists y^\sigma B(x,y)\rightarrow \forall x^\sigma \exists z^{0\rightarrow \sigma }(z0=x\wedge \forall w^0B(zw, z(w+1))) \end{aligned}$$

be an instance of \(\mathrm {DC}_\sigma \), and suppose that \((\forall a\in [\![\sigma ]\!] )(\exists b\in [\![\sigma ]\!] )[\![B]\!] (a,b)\). As in the proof of Proposition 35, there exists \(\beta \) such that

$$\begin{aligned} \beta \in [\![\sigma \rightarrow \sigma ]\!] \wedge \forall a\in [\![\sigma ]\!] [\![B]\!] (a, \beta {\cdot }a). \end{aligned}$$

For each \(a\in [\![\sigma ]\!] \), let \(\chi \equiv \lambda w. [\![{{\varvec{r}}}^\sigma ]\!] (a,\beta , w)\) if \([\sigma ]\equiv 0\), and \(\chi \equiv \lambda w. [\![{{\varvec{r}}}^\sigma ]\!] |a|\beta |(\lambda v. w)\), otherwise. Then, by induction on w, we can show that

$$\begin{aligned} \chi \in [\![0\rightarrow \sigma ]\!] \wedge \chi {\cdot }0=a\wedge \forall w[\chi \cdot w{\downarrow }_{[\sigma ]}\wedge [\![B]\!] (\chi {\cdot }w, \chi {\cdot }(w+1))], \end{aligned}$$

which implies

$$\begin{aligned}{}[\![\exists \alpha ^{0\rightarrow \sigma }(\alpha {\cdot }0=a\wedge \forall w B(\alpha {\cdot }w, \alpha {\cdot }(w+1)))]\!] , \end{aligned}$$

in \(\mathbf {EL}^*\). \(\square \)

Corollary 37

\(\mathbf{S}\vdash A\) implies \(\mathbf {EL}^*+\mathrm {BI}_\mathrm{M}+\mathrm {MP}+\mathrm {GC}\vdash [\![A]\!] \) for any sentence A in \(\mathscr {L}(\mathbf {HA}^{\omega })\).

Proof

It is trivial that \(\exists x(x\in [\![0]\!] )\). By induction on types, we can also prove that \(\exists \alpha (\alpha \in [\![\sigma ]\!] )\) for any type \(\sigma \not \equiv 0\). Using this fact, we can prove that \(\mathbf {HA}^{\omega }+\varGamma \vdash A\) yields \(\mathbf {EL}^*+\{ [\![B^c]\!] :B\in \varGamma \}\vdash A^c\) by induction on derivations, where \(B^c\) is the universal closure of B. The rest of the proof follows from Corollary 31, Lemmas 32, 35 and 36. \(\square \)

Note that we can prove Propositions 35 and 36 for any interpretation and terms \(\phi _\sigma \) and \(\chi _\sigma \) satisfying (P3) and (P6)–(P9).

3.3 Combining with the functional realizability interpretation

In this subsection, we interpret \(\mathbf {EL}^*+\mathrm {BI}_\mathrm{M}+\mathrm {MP}+\mathrm {GC}\) into \(\mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}\), using Kleene’s function realizability [4, §5.1] or \(r^1\)-realizability in [7, 3.3.1–3.3.13]. By combining Troelstra’s characterization theorem and the self-realizability of \(\mathrm {BI}!\), we show that \(\mathbf {EL}+\mathrm {BI}_\mathrm{M}+\mathrm {MP}+\mathrm {GC}\) is consistent relative to \(\mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}\) and so is \(\mathbf{S}\) to \(\mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}\).

Take a mapping \(\mathtt {s}\) from the set of formulae in \(\mathscr {L}(\mathbf {EL}^*)\) to the one of formulae in \(\mathscr {L}(\mathbf {EL})\) satisfying the condition in Definition 17. For each schema \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {EL})\) and formulae \(\vec {A}\) in \(\mathscr {L}(\mathbf {EL}^*)\), \(\mathbf {EL}\) proves \(\mathtt {s}({\varvec{\alpha }}[\vec {\nu }/\vec {A}])\leftrightarrow {\varvec{\alpha }}[\vec {\nu }/\vec {\mathtt {s}(A)}]\), i.e., each instance of a schema \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {EL}^*)\) is mapped into an instance of the same \({\varvec{\alpha }}\) in \(\mathscr {L}(\mathbf {EL})\). Therefore, \(\mathbf {EL}^*+\mathrm {BI}_\mathrm{M}+\mathrm {MP}+\mathrm {GC}\vdash A\) yields

$$\begin{aligned} \mathbf {EL}+\{\mathtt {s}(B):B\text { is an instance of }\mathrm {BI}_\mathrm{M}, \mathrm {MP}\text { or } \mathrm {GC}\text { in }\mathscr {L}(\mathbf {EL}^*)\} \vdash \mathtt {s}(A), \end{aligned}$$

which is equivalent to, by Proposition 30,

$$\begin{aligned} \mathbf {EL}+\mathrm {BI}_\mathrm{M}+\mathrm {MP}+\{\mathtt {s}(B):B\text { is an instance of }\mathrm {GC}\text { in }\mathscr {L}(\mathbf {EL}^*)\} \vdash \mathtt {s}(A). \end{aligned}$$

Following the literature on the functional realizability interpretation such as [7], we write \(\mathbf {EL}+\varDelta +\varGamma \vdash A\) if \(\mathbf {EL}+\varDelta +\{ \mathtt {s}(B):B\in \varGamma \}\vdash \mathtt {s}(A)\), for a set \(\varDelta \) of formulae in \(\mathscr {L}(\mathbf {EL})\), a set \(\varGamma \) of formulae in \(\mathscr {L}(\mathbf {EL}^*)\) and a formula A in \(\mathscr {L}(\mathbf {EL}^*)\).

Definition 38

(Kleene’s function realizability, [4, §5.1]) For each formula A and a functional variable \(\alpha \), define a formula \(\alpha {\mathbf{r}} A\) in \(\mathscr {L}(\mathbf {EL}^*)\) as follows:

$$\begin{aligned}&\alpha {\mathbf{r}} A\equiv A \;\text { for prime }A\text { in }\mathscr {L}(\mathbf {EL}); \\&\alpha {\mathbf{r}} B\wedge C\equiv (\alpha )_0 {\mathbf{r}} B \wedge (\alpha )_1{\mathbf{r}} C; \\&\alpha {\mathbf{r}} B\vee C\equiv ((\alpha )_0(0)=0\rightarrow (\alpha )_1{\mathbf{r}} B)\wedge ((\alpha )_0(0)\ne 0\rightarrow (\alpha )_1{\mathbf{r}} C); \\&\alpha {\mathbf{r}} B\rightarrow C \equiv \forall \beta (\beta \mathbf{r}B \rightarrow a|b{\downarrow }\wedge \alpha |\beta {\mathbf{r}} C); \\&\alpha {\mathbf{r}} \forall x^0\mathbf{r}B(x) \equiv \forall x((\alpha |\lambda y. x){\downarrow }\wedge (\alpha |\lambda y. x){\mathbf{r}} B(x)); \\&\alpha {\mathbf{r}} \exists x^0 B(x) \equiv (\alpha )_1 {\mathbf{r}} B((\alpha )_0(0)); \\&\alpha {\mathbf{r}} \forall x^1{\mathbf{r}} B(x) \equiv \forall \beta ^1(\alpha |\beta {\downarrow }\wedge \alpha |\beta {\mathbf{r}} B(\beta )); \\&\alpha {\mathbf{r}} \exists x^1 B(x) \equiv (\alpha )_1 {\mathbf{r}} B((\alpha )_0). \end{aligned}$$

The bar induction for decidable bars (\(\mathrm {BI}_\mathrm{D}\)) is given as follows (cf. [7, 1.9.20]):

$$\begin{aligned}&[\forall \alpha \exists xC(\overline{\alpha }x)\wedge \forall x(C(x)\vee \lnot C(x))\wedge \forall x(C(x)\rightarrow D(x))\wedge \\&\quad \forall x(\forall yD(x*\langle y\rangle )\rightarrow D(x))] \rightarrow D(\langle \rangle ). \end{aligned}$$

Lemma 39

\(\mathrm {BI}_\mathrm{M}\) and \(\mathrm {BI}_\mathrm{D}\) are equivalent over \(\mathbf {EL}+\mathrm {GC}\).

Proof

In [9, Ch.4.8.13], it is proved that \(\mathrm {BI}_\mathrm{M}\) and \(\mathrm {BI}_{D}\) are equivalent over \(\mathbf {EL}+\mathrm {C}\text {-}\mathrm {N}\). Since \(\mathbf {EL}+\mathrm {GC}\) implies \(\mathrm {C}\text {-}\mathrm {N}\) by Proposition 32, we have the desired equivalence. \(\square \)

Lemma 40

\(\mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}+\mathrm {GC}\vdash A\) if and only if \(\mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}\vdash \exists \alpha (\alpha \mathbf{r}A)\).

Proof

Note that \(\mathrm {MP}\) is almost negative. Then \(\mathbf {EL}+\mathrm {MP}\vdash \exists \alpha (\alpha \mathbf{r}A)\) for each instance A of \(\mathrm {MP}\), by [7, 3.3.8 Lemma]. A variant \(\mathrm {BI}!\) of \(\mathrm {BI}_\mathrm{D}\) is given by replacing \(\exists \) with \(\exists !\) in \(\mathrm {BI}_\mathrm{D}\). By the self-realizability of \(\mathrm {BI}!\) [7, 3.3.4 Theorem and Remark], we have that \(\mathbf {EL}+\mathrm {BI}!\vdash \exists \alpha (\alpha \mathbf{r}A)\) for each instance A of \(\mathrm {BI}!\).

Therefore we have

$$\begin{aligned} \mathbf {EL}+\mathrm {BI}!+\mathrm {MP}\vdash A\Longrightarrow \mathbf {EL}+\mathrm {BI}!+\mathrm {MP}\vdash \exists \alpha (\alpha \mathbf{r}A), \end{aligned}$$

by [7, 3.3.3 Corollary (ii)]. Thus we have

$$\begin{aligned} \mathbf {EL}+\mathrm {BI}!+\mathrm {MP}+\mathrm {GC}\vdash A \Longleftrightarrow \mathbf {EL}+\mathrm {BI}!+\mathrm {MP}\vdash \exists \alpha (\alpha \mathbf{r}A) \end{aligned}$$

for each formula A in \(\mathscr {L}(\mathbf {EL})\), by Troelstra’s characterization theorem [7, 3.3.11 Theorem (ii)].

Since it is easy to see that \(\mathrm {BI}!\) is equivalent to \(\mathrm {BI}_\mathrm{D}\) over \(\mathbf {EL}\) by replacing C(x) with \(C(x)\wedge (\forall y<|x|)\lnot C(\overline{x}y)\) in \(\mathrm {BI}_\mathrm{D}\), the above implies

$$\begin{aligned} \mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}+\mathrm {GC}\vdash A \Longleftrightarrow \mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}\vdash \exists \alpha (\alpha \mathbf{r}A). \end{aligned}$$

\(\square \)

Corollary 41

\(\mathbf {EL}+\mathrm {BI}_\mathrm{M}+\mathrm {MP}+\mathrm {GC}\vdash A\) if and only if \(\mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}\vdash \exists a^1(a\mathbf{r}A)\).

Finally, we have the following:

Theorem 42

\(\mathbf{S}\vdash A\) implies \(\mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}\vdash \exists \alpha (\alpha \mathbf{r}[\![A]\!] )\), for any sentence A in \(\mathscr {L}(\mathbf {HA}^{\omega })\).

Proof

By Corollaries 37 and 41. \(\square \)

Corollary 43

\(\mathbf{S}\) is consistent relative to \(\mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}\).

In \(\mathbf{ZF}\), the standard structure \({\mathbf {N}}^{{\mathbf {N}}}\cup {\mathbf {N}}\) is a model of \(\mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}\). Therefore \(\mathbf {EL}+\mathrm {BI}_\mathrm{D}+\mathrm {MP}\) is consistent, and so is \(\mathbf{S}\). Thus, we have the following by the Corollary 8.

Theorem 44

  1. 1.

    \(\mathbf{S}\) is not closed under \(\mathrm {IPR}^\omega \), and so it does not derive \(\mathrm {IP}^\omega \).

  2. 2.

    \(\mathbf {HA}^\omega +\mathrm {BI}_\mathrm{M}+\mathrm {C}\text {-}\mathrm {N}+\mathrm {AC}+\mathrm {DC}\) derives neither \(\mathrm {IP}^\omega \) nor \(\mathrm {MP}\).