Skip to main content

Advertisement

Log in

Measuring neuron-regulated immune cell physiology via the alpha-2 adrenergic receptor in an ex vivo murine spleen model

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The communication between the nervous and immune systems plays a crucial role in regulating immune cell function and inflammatory responses. Sympathetic neurons, which innervate the spleen, have been implicated in modulating immune cell activity. The neurotransmitter norepinephrine (NE), released by sympathetic neurons, influences immune cell responses by binding to adrenergic receptors on their surface. The alpha-2 adrenergic receptor (α2AR), expressed predominantly on sympathetic neurons, has received attention due to its autoreceptor function and ability to modulate NE release. In this study, we used fast-scan cyclic voltammetry (FSCV) to provide the first subsecond measurements of NE released in the white pulp region of the spleen and validated it with yohimbine, a known antagonist of α2AR. For further application of FSCV in neuroimmunology, we investigated the extent to which subsecond NE from sympathetic neurons is important for immune cell physiology and cytokine production, focusing on tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and interleukin-6 (IL-6). Our findings provide insights into the regulatory mechanisms underlying sympathetic-immune interactions and show the significance of using FSCV, a traditional neurochemistry technique, to study these neuroimmune mechanisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author. The data will be made available from the corresponding author on reasonable request.

References

  1. Sundman E, Olofsson PS (2014) Neural control of the immune system. Adv Physiol Educ 38(2):135–139

    PubMed Central  PubMed  Google Scholar 

  2. Mueller SN (2022) Neural control of immune cell trafficking. J Exp Med 219(3):e20211604

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Kelly MJ, Breathnach C, Tracey KJ, Donnelly SC (2022) Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep Med 3(7):100696

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Nutma E, Willison H, Martino G, Amor S (2019) Neuroimmunology – the past, present and future. Clin Exp Immunol 197(3):278–293

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Pavlov VA, Tracey KJ (2017) Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci 20(2):156–166

    CAS  PubMed  Google Scholar 

  6. Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5(8):606–616

    CAS  PubMed  Google Scholar 

  7. Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34(5):455–465

    PubMed  Google Scholar 

  8. Zhao L, Liu L, Guo B, Zhu B (2015) Regulation of adaptive immune responses by guiding cell movements in the spleen. Front Microbiol 25(6):645

    Google Scholar 

  9. Hu D, Al-Shalan HAM, Shi Z, Wang P, Wu Y, Nicholls PK et al (2020) Distribution of nerve fibers and nerve-immune cell association in mouse spleen revealed by immunofluorescent staining. Sci Rep 10(1):9850

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Izumo T, Maekawa T, Horii Y, Fujisaki Y, Ida M, Furukawa Y et al (2013) The effect of the sympathetic nervous system on splenic natural killer cell activity in mice administered the Lactobacillus pentosus strain S-PT84. NeuroReport 24(17):988

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Hoover DB, Brown TC, Miller MK, Schweitzer JB, Williams DL (2017) Loss of sympathetic nerves in spleens from patients with end stage sepsis. Front Immunol. https://doi.org/10.3389/fimmu.2017.01712

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dustin ML (2012) Signaling at neuro/immune synapses. J Clin Invest 122(4):1149–1155

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bucsek MJ, Giridharan T, MacDonald CR, Hylander BL, Repasky EA (2018) An overview of the role of sympathetic regulation of immune responses in infectious disease and autoimmunity. Int J Hyperthermia 34(2):135–143

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen CS, Barnoud C, Scheiermann C (2021) Peripheral neurotransmitters in the immune system. Curr Opin Physio 1(19):73–79

    Google Scholar 

  15. Sharma D, Farrar JD (2020) Adrenergic regulation of immune cell function and inflammation. Semin Immunopathol 42(6):709–717

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Araujo LP, Maricato JT, Guereschi MG, Takenaka MC, Nascimento VM, de Melo FM et al (2019) The sympathetic nervous system mitigates CNS autoimmunity via β2-adrenergic receptor signaling in immune cells. Cell Rep 28(12):3120-3130.e5

    CAS  PubMed  Google Scholar 

  17. Scanzano A, Cosentino M (2015) Adrenergic regulation of innate immunity: a review. Front Pharmacol 13(6):171

    Google Scholar 

  18. Slota C, Shi A, Chen G, Bevans M, Weng NP (2015) Norepinephrine preferentially modulates memory CD8 T cell function inducing inflammatory cytokine production and reducing proliferation in response to activation. Brain Behav Immun 46:168–79

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Grisanti LA, Perez DM, Porter JE (2011) Modulation of immune cell function by α1-adrenergic receptor activation. Curr Top Membr 67:113–138

    CAS  PubMed Central  Google Scholar 

  20. Chhatar S, Lal G (2021) Role of adrenergic receptor signalling in neuroimmune communication. Curr Res Immunol 1(2):202–217

    Google Scholar 

  21. Gilsbach R, Hein L (2012) Are the pharmacology and physiology of α2adrenoceptors determined by α2-heteroreceptors and autoreceptors respectively? Br J Pharmacol 165(1):90–102

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Philipp M, Brede M, Hein L (2002) Physiological significance of α2-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283(2):R287–R295

    CAS  PubMed  Google Scholar 

  23. Hering L, Rahman M, Potthoff SA, Rump LC, Stegbauer J (2020) Role of α2-adrenoceptors in hypertension: focus on renal sympathetic neurotransmitter release, inflammation, and sodium homeostasis. Front Physiol 9(11):566871

    Google Scholar 

  24. Murburg MM, Villacres EC, Ko GN, Veith RC (1991) Effects of yohimbine on human sympathetic nervous system function. J Clin Endocrinol Metab 73(4):861–865

    CAS  PubMed  Google Scholar 

  25. Cong Z, Li D, Lv X, Yang C, Zhang Q, Wu C et al (2020) α2A-adrenoceptor deficiency attenuates lipopolysaccharide-induced lung injury by increasing norepinephrine levels and inhibiting alveolar macrophage activation in acute respiratory distress syndrome. Clin Sci 134(14):1957–1971

    CAS  Google Scholar 

  26. Doxey JC, Lane AC, Roach AG, Virdee NK (1984) Comparison of the alpha-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthine. Naunyn Schmiedebergs Arch Pharmacol 325(2):136–144

    CAS  PubMed  Google Scholar 

  27. Haller J, Makara GB, Pintér I, Gyertyán I, Egyed A (1997) The mechanism of action of alpha 2 adrenoceptor blockers as revealed by effects on open field locomotion and escape reactions in the shuttle-box. Psychopharmacology 134(2):107–114

    CAS  PubMed  Google Scholar 

  28. Berlin I, Crespo-Laumonnier B, Cournot A, Landault C, Aubin F, Legrand JC et al (1991) The alpha 2-adrenergic receptor antagonist yohimbine inhibits epinephrine-induced platelet aggregation in healthy subjects. Clin Pharmacol Ther 49(4):362–369

    CAS  PubMed  Google Scholar 

  29. Fairbanks CA, Stone LS, Wilcox GL (2009) Pharmacological profiles of alpha 2 adrenergic receptor agonists identified using genetically altered mice and isobolographic analysis. Pharmacol Ther 123(2):224–238

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Jabir NR, Firoz CK, Zughaibi TA, Alsaadi MA, Abuzenadah AM, Al-Asmari AI et al (2022) A literature perspective on the pharmacological applications of yohimbine. Ann Med 54(1):2861–75

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, Riella M et al (2005) IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia–the good, the bad, and the ugly. Kidney Int 67(4):1216–1233

    CAS  PubMed  Google Scholar 

  32. Parameswaran N, Patial S (2010) Tumor Necrosis Factor-α Signaling in Macrophages. Crit Rev Eukaryot Gene Expr 20(2):87–103

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Iyer SS, Cheng G (2012) Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 32(1):23–63

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6(10):a016295

    PubMed Central  PubMed  Google Scholar 

  35. Venton BJ, Cao Q (2020) Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst 145(4):1158–1168

    CAS  PubMed Central  PubMed  Google Scholar 

  36. John CE, Jones SR (2007) Fast scan cyclic voltammetry of dopamine and serotonin in mouse brain slices. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. CRC Press/Taylor & Francis, Boca Raton (FL)

    Google Scholar 

  37. Castagnola E, Robbins EM, Woeppel KM, McGuier M, Golabchi A, Taylor IM et al (2020) Real-time fast scan cyclic voltammetry detection and quantification of exogenously administered melatonin in mice brain. Front Bioeng Biotechnol 24(8):602216

    Google Scholar 

  38. Lim G, Regan S, Ross AE (2020) Subsecond spontaneous catecholamine release in mesenteric lymph node ex vivo. J Neurochem. https://doi.org/10.1111/jnc.15115

    Article  PubMed  Google Scholar 

  39. Finetti F, Capitani N, Manganaro N, Tatangelo V, Libonati F, Panattoni G et al (2020) Optimization of organotypic cultures of mouse spleen for staining and functional assays. Front Immunol 24(11):471

    Google Scholar 

  40. Stuber GD, Roitman MF, Phillips PEM, Carelli RM, Wightman RM (2005) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacol 30(5):853–863

    CAS  Google Scholar 

  41. Huffman ML, Venton BJ (2009) Carbon-fiber microelectrodes for in vivo applications. Analyst 134(1):18–24

    CAS  PubMed  Google Scholar 

  42. Logman MJ, Budygin EA, Gainetdinov RR, Wightman RM (2000) Quantitation of in vivo measurements with carbon fiber microelectrodes. J Neurosci Methods 95(2):95–102

    CAS  PubMed  Google Scholar 

  43. Park J, Takmakov P, Wightman RM (2011) In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry. J Neurochem 119(5):932–944

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Nicolai EN, Trevathan JK, Ross EK, Lujan JL, Blaha CD, Bennet KE et al (2017) Detection of norepinephrine in whole blood via fast scan cyclic voltammetry. IEEE Int Symp Med Meas Appl 2017:111–116

    PubMed Central  PubMed  Google Scholar 

  45. Nguyen MD, Lee ST, Ross AE, Ryals M, Choudhry VI, Venton BJ (2014) Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex. PLoS ONE 9(1):e87165

    PubMed Central  PubMed  Google Scholar 

  46. Ross AE, Nguyen MD, Privman E, Venton BJ (2014) Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex. J Neurochem 130(1):50–60

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Adamah-Biassi EB, Almonte AG, Blagovechtchenski E, Grinevich VP, Weiner JL, Bonin KD et al (2015) Real time adenosine fluctuations detected with fast-scan cyclic voltammetry in the rat striatum and motor cortex. J Neurosci Methods 30(256):56–62

    Google Scholar 

  48. Sun M, Kaplan SV, Gehringer RC, Limbocker RA, Johnson MA (2014) Localized drug application and sub-second voltammetric dopamine release measurements in a brain slice perfusion device. Anal Chem 86(9):4151–4156

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Nance DM, Sanders VM (2007) autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21(6):736–745

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Koopman FA, Stoof SP, Straub RH, van Maanen MA, Vervoordeldonk MJ, Tak PP (2011) Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med 17(9):937–48

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Ding X, Wang H, Qian X, Han X, Yang L, Cao Y et al (2019) Panicle-shaped sympathetic architecture in the spleen parenchyma modulates antibacterial innate immunity. Cell Rep 27(13):3799-3807.e3

    CAS  PubMed  Google Scholar 

  52. Zhou J (2004) Norepinephrine transporter inhibitors and their therapeutic potential. Drugs Future 29(12):1235–1244

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Lorenz W, Lomasney JW, Collins S, Regan JW, Caron MG, Lefkowitz RJ (1990) Expression of three alpha 2-adrenergic receptor subtypes in rat tissues: implications for alpha 2 receptor classification. Mol Pharmacol 38(5):599–603

    CAS  PubMed  Google Scholar 

  54. Giovannitti JA, Thoms SM, Crawford JJ (2015) Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog 62(1):31–38

    PubMed Central  PubMed  Google Scholar 

  55. Schmidt KT, McElligott ZA (2019) Dissecting the catecholamines: how new approaches will facilitate the distinction between noradrenergic and dopaminergic systems. ACS Chem Neurosci 10(4):1872–1874

    CAS  PubMed  Google Scholar 

  56. Fuchs BA, Campbell KS, Munson AE (1988) Norepinephrine and serotonin content of the murine spleen: its relationship to lymphocyte beta-adrenergic receptor density and the humoral immune response in vivo and in vitro. Cell Immunol 117(2):339–351

    CAS  PubMed  Google Scholar 

  57. Ayers AB, Davies BN, Withrington PG (1972) Responses of the isolated, perfused human spleen to sympathetic nerve stimulation, catecholamines and polypeptides. Br J Pharmacol 44(1):17–30

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Chen WC, Liu YB, Liu WF, Zhou YY, He HF, Lin S (2020) Neuropeptide Y is an immunomodulatory factor: direct and indirect. Front Immunol. https://doi.org/10.3389/fimmu.2020.580378

    Article  PubMed Central  PubMed  Google Scholar 

  59. Ganea D, Hooper KM, Kong W (2015) The neuropeptide VIP: direct effects on immune cells and involvement in inflammatory and autoimmune diseases. Acta Physiol (Oxf) 213(2):442–452

    CAS  PubMed  Google Scholar 

  60. Hasebe R, Murakami K, Harada M, Halaka N, Nakagawa H, Kawano F et al (2022) ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons. J Exp Med 219(6):e20212019

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR et al (2022) Crystal structure of the α1B-adrenergic receptor reveals molecular determinants of selective ligand recognition. Nat Commun 13(1):382

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Graham RM, Perez DM, Hwa J, Piascik MT (1996) α1-adrenergic receptor subtypes. Circ Res 78(5):737–749

    CAS  PubMed  Google Scholar 

  63. Ranjbar-Slamloo Y, Fazlali Z (2020) Dopamine and noradrenaline in the brain; overlapping or dissociate functions? Front Mol Neurosci. https://doi.org/10.3389/fnmol.2019.00334

    Article  PubMed Central  PubMed  Google Scholar 

  64. Feng Z, Jensen SM, Messenheimer DJ, Farhad M, Neuberger M, Bifulco CB et al (2016) Multispectral imaging of T and B Cells in murine spleen and tumor. J Immunol 196(9):3943–3950

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Sasou S, Sugai T (1992) Periarterial lymphoid sheath in the rat spleen: a light, transmission, and scanning electron microscopic study. Anat Rec 232(1):15–24

    CAS  PubMed  Google Scholar 

  66. Murray K, Godinez DR, Brust-Mascher I, Miller EN, Gareau MG, Reardon C (2017) Neuroanatomy of the spleen: Mapping the relationship between sympathetic neurons and lymphocytes. PLoS ONE 12(7):e0182416

    PubMed Central  PubMed  Google Scholar 

  67. Ağaç D, Estrada LD, Maples R, Hooper LV, Farrar JD (2018) The β2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion. Brain Behav Immun 74:176–185

    PubMed Central  PubMed  Google Scholar 

  68. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J et al (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204–7218

    PubMed Central  PubMed  Google Scholar 

  69. Frasca D, Romero M, Diaz A, Alter-Wolf S, Ratliff M, Landin AM et al (2012) A molecular mechanism for TNF-α-mediated down-regulation of B cell responses. J Immunol 188(1):279–286

    CAS  PubMed  Google Scholar 

  70. Mehta AK, Gracias DT, Croft M (2018) TNF Activity and T cells. Cytokine 101:14–18

    CAS  PubMed  Google Scholar 

  71. Popko K, Gorska E, Stelmaszczyk-Emmel A, Plywaczewski R, Stoklosa A, Gorecka D et al (2010) Proinflammatory cytokines IL-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res 15(Suppl 2):120–122

    PubMed Central  PubMed  Google Scholar 

  72. Pongratz G, Straub RH (2014) The sympathetic nervous response in inflammation. Arthritis Res Ther 16:504

    PubMed Central  PubMed  Google Scholar 

  73. Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402(6758):181–184

    CAS  PubMed  Google Scholar 

  74. Li H, Wang Y, Zhang H, Jia B, Wang D, Li H et al (2012) Yohimbine enhances protection of berberine against LPS-induced mouse lethality through multiple mechanisms. PLoS ONE 7(12):e52863

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Hamano N, Inada T, Iwata R, Asai T, Shingu K (2007) The α2-adrenergic receptor antagonist yohimbine improves endotoxin-induced inhibition of gastrointestinal motility in mice. Br J Anaesth 98(4):484–490

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this work would like to acknowledge the assistance of the Live Microscopy Core in the Department of Pharmacology & Systems Physiology at the University of Cincinnati College of Medicine. Abstract image and figure one were created with the help of Biorender.com.

Funding

The research reported in this manuscript was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI151552. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The authors would also like to thank the Alfred P. Sloan Foundation (Grant #FG-2022-18400) for support of this work. The authors would also like to acknowledge the NIH T32 (NS007453) for funding K.C.N.C. for this work.

Author information

Authors and Affiliations

Authors

Contributions

AKB and AER contributed to the study concept and design. Material preparation, data collection and analysis were performed by AKB, DPM, KCNC, and CEW. The first draft of the manuscript was written by AKB. AKB, CEW, and AER contributed on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ashley E. Ross.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 469 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooke, A.K., Murrow, D.P., Caldwell, K.C.N. et al. Measuring neuron-regulated immune cell physiology via the alpha-2 adrenergic receptor in an ex vivo murine spleen model. Cell. Mol. Life Sci. 80, 354 (2023). https://doi.org/10.1007/s00018-023-05012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-05012-2

Keywords

Navigation