Skip to main content

Advertisement

Log in

USP35 dimer prevents its degradation by E3 ligase CHIP through auto-deubiquitinating activity

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Recently, a number of reports on the importance of USP35 in cancer have been published. However, very little is known about the exact mechanism by which USP35 activity is regulated. Here, we show the possible regulation of USP35 activity and the structural specificity affecting its function by analyzing various fragments of USP35. Interestingly, the catalytic domain of USP35 alone does not exhibit deubiquitinating activity; in contrast, the C-terminal domain and insertion region in the catalytic domain is required for full USP35 activity. Additionally, through its C-terminal domain, USP35 forms a homodimer that prevents USP35 degradation. CHIP bound to HSP90 interacts with and ubiquitinates USP35. However, when fully functional USP35 undergoes auto-deubiquitination, which attenuates CHIP-mediated ubiquitination. Finally, USP35 dimer is required for deubiquitination of the substrate Aurora B and regulation of faithful mitotic progression. The properties of USP35 identified in this study are a unique homodimer structure, regulation of deubiquitinating activity through this, and utilization of a novel E3 ligase involved in USP35 auto-deubiquitination, which adds another complexity to the regulation of deubiquitinating enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data are available from the corresponding authors upon reasonable request.

References

  1. Wang Y, Serricchio M, Jauregui M, Shanbhag R, Stoltz T et al (2015) Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11:595–606. https://doi.org/10.1080/15548627.2015.1034408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leznicki P, Natarajan J, Bader G, Spevak W, Schlattl A et al (2018) Expansion of DUB functionality generated by alternative isoforms—USP35, a case study. J Cell Sci. https://doi.org/10.1242/jcs.212753

    Article  PubMed  PubMed Central  Google Scholar 

  3. Park J, Kwon MS, Kim EE, Lee H, Song EJ (2018) USP35 regulates mitotic progression by modulating the stability of Aurora B. Nat Commun 9:688. https://doi.org/10.1038/s41467-018-03107-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsai IC, Adams KA, Tzeng JA, Shennib O, Tan PL et al (2019) Genome-wide suppressor screen identifies USP35/USP38 as therapeutic candidates for ciliopathies. JCI Insight 4:e130516. https://doi.org/10.1172/jci.insight.130516

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cao J, Wu D, Wu G, Wang Y, Ren T et al (2021) USP35, regulated by estrogen and AKT, promotes breast tumorigenesis by stabilizing and enhancing transcriptional activity of estrogen receptor alpha. Cell Death Dis 12:619. https://doi.org/10.1038/s41419-021-03904-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang J, Chen Y, Chen X, Zhang W, Zhao L et al (2021) Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer. Cell Death Differ 28:139–155. https://doi.org/10.1038/s41418-020-0588-y

    Article  CAS  PubMed  Google Scholar 

  7. Wang W, Wang M, Xiao Y, Wang Y, Ma L et al (2022) USP35 mitigates endoplasmic reticulum stress-induced apoptosis by stabilizing RRBP1 in non-small cell lung cancer. Mol Oncol 16:1572–1590. https://doi.org/10.1002/1878-0261.13112

    Article  CAS  PubMed  Google Scholar 

  8. Liu C, Chen Z, Ding X, Qiao Y, Li B (2022) Ubiquitin-specific protease 35 (USP35) mediates cisplatin-induced apoptosis by stabilizing BIRC3 in non-small cell lung cancer. Lab Invest 102:524–533. https://doi.org/10.1038/s41374-021-00725-z

    Article  CAS  PubMed  Google Scholar 

  9. Tang Z, Jiang W, Mao M, Zhao J, Chen J et al (2021) Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin. Clin Transl Med 11:e390. https://doi.org/10.1002/ctm2.390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Faesen AC, Dirac AM, Shanmugham A, Ovaa H, Perrakis A et al (2011) Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol Cell 44:147–159. https://doi.org/10.1016/j.molcel.2011.06.034

    Article  CAS  PubMed  Google Scholar 

  11. Clerici M, Luna-Vargas MP, Faesen AC, Sixma TK (2014) The DUSP-Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange. Nat Commun 5:5399. https://doi.org/10.1038/ncomms6399

    Article  PubMed  Google Scholar 

  12. Liu B, Sureda-Gomez M, Zhen Y, Amador V, Reverter D (2018) A quaternary tetramer assembly inhibits the deubiquitinating activity of USP25. Nat Commun 9:4973. https://doi.org/10.1038/s41467-018-07510-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gersch M, Wagstaff JL, Toms AV, Graves B, Freund SMV et al (2019) Distinct USP25 and USP28 oligomerization states regulate deubiquitinating activity. Mol Cell 74:436-451 e437. https://doi.org/10.1016/j.molcel.2019.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sauer F, Klemm T, Kollampally RB, Tessmer I, Nair RK et al (2019) Differential oligomerization of the deubiquitinases USP25 and USP28 regulates their activities. Mol Cell 74:421-435 e410. https://doi.org/10.1016/j.molcel.2019.02.029

    Article  CAS  PubMed  Google Scholar 

  15. Das T, Shin SC, Song EJ, Kim EE (2020) Regulation of deubiquitinating enzymes by post-translational modifications. Int J Mol Sci 21:4028. https://doi.org/10.3390/ijms21114028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Todi SV, Scaglione KM, Blount JR, Basrur V, Conlon KP et al (2010) Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. J Biol Chem 285:39303–39313. https://doi.org/10.1074/jbc.M110.181610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meray RK, Lansbury PT Jr (2007) Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1. J Biol Chem 282:10567–10575. https://doi.org/10.1074/jbc.M611153200

    Article  CAS  PubMed  Google Scholar 

  18. Wijnhoven P, Konietzny R, Blackford AN, Travers J, Kessler BM et al (2015) USP4 auto-deubiquitylation promotes homologous recombination. Mol Cell 60:362–373. https://doi.org/10.1016/j.molcel.2015.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mashtalir N, Daou S, Barbour H, Sen NN, Gagnon J et al (2014) Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol Cell 54:392–406. https://doi.org/10.1016/j.molcel.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  20. Alonso-de Vega I, Martin Y, Smits VA (2014) USP7 controls Chk1 protein stability by direct deubiquitination. Cell Cycle 13:3921–3926. https://doi.org/10.4161/15384101.2014.973324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mei Y, Hahn AA, Hu S, Yang X (2011) The USP19 deubiquitinase regulates the stability of c-IAP1 and c-IAP2. J Biol Chem 286:35380–35387. https://doi.org/10.1074/jbc.M111.282020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Svergun DI, Petoukhov MV, Koch MH (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80:2946–2953. https://doi.org/10.1016/S0006-3495(01)76260-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Crystallogr 34:33–41. https://doi.org/10.1107/S0021889800014126

    Article  CAS  Google Scholar 

  24. Classen S, Hura GL, Holton JM, Rambo RP, Rodic I et al (2013) Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. J Appl Crystallogr 46:1–13. https://doi.org/10.1107/S0021889812048698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ et al (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93–96. https://doi.org/10.1038/35050618

    Article  CAS  PubMed  Google Scholar 

  26. Muller P, Ruckova E, Halada P, Coates PJ, Hrstka R et al (2013) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 32:3101–3110. https://doi.org/10.1038/onc.2012.314

    Article  CAS  PubMed  Google Scholar 

  27. Grove TZ, Cortajarena AL, Regan L (2008) Ligand binding by repeat proteins: natural and designed. Curr Opin Struct Biol 18:507–515. https://doi.org/10.1016/j.sbi.2008.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hou Z, Shi W, Feng J, Wang W, Zheng E et al (2021) Self-stabilizing regulation of deubiquitinating enzymes in an enzymatic activity-dependent manner. Int J Biol Macromol 181:1081–1091. https://doi.org/10.1016/j.ijbiomac.2021.04.073

    Article  CAS  PubMed  Google Scholar 

  29. Huang X, Summers MK, Pham V, Lill JR, Liu J et al (2011) Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol Cell 42:511–523. https://doi.org/10.1016/j.molcel.2011.03.027

    Article  CAS  PubMed  Google Scholar 

  30. Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE et al (2014) The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510:370–375. https://doi.org/10.1038/nature13418

    Article  CAS  PubMed  Google Scholar 

  31. Chan NC, den Besten W, Sweredoski MJ, Hess S, Deshaies RJ et al (2014) Degradation of the deubiquitinating enzyme USP33 is mediated by p97 and the ubiquitin ligase HERC2. J Biol Chem 289:19789–19798. https://doi.org/10.1074/jbc.M114.569392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2:1133–1138. https://doi.org/10.1093/embo-reports/kve246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIP) (2019R1A2C2004052, 2022R1A2C1092294) and Korea Institute of Science and Technology (KIST) Institutional Program (2E32312).

Author information

Authors and Affiliations

Authors

Contributions

JP, EEK and EJS contributed to the study’s conception and design. The most of experiments and analysis were performed by JP. SCS, KSJ, and MJL performed structural analysis and contributed to data collection. YK prepared materials and performed the cell analysis. The first draft of the manuscript was written by JP and SCS. EEK and EJS commented and approved the final manuscript, and conceived and supervised the study.

Corresponding authors

Correspondence to Eunice EunKyeong Kim or Eun Joo Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 712 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Shin, S.C., Jin, K.S. et al. USP35 dimer prevents its degradation by E3 ligase CHIP through auto-deubiquitinating activity. Cell. Mol. Life Sci. 80, 112 (2023). https://doi.org/10.1007/s00018-023-04740-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04740-9

Keywords

Navigation