Skip to main content

Advertisement

Log in

Hepatocyte PPARγ contributes to the progression of non-alcoholic steatohepatitis in male and female obese mice

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Non-alcoholic steatohepatitis (NASH) is associated with obesity and increased expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ). However, the relevance of hepatocyte PPARγ in NASH associated with obesity is still poorly understood. In this study, hepatocyte PPARγ was knocked out (PpargΔHep) in male and female mice after the development of high-fat diet-induced obesity. The diet-induced obese mice were then maintained on their original diet or switched to a high fat, cholesterol, and fructose (HFCF) diet to induce NASH. Hepatic PPARγ expression was mostly derived from hepatocytes and increased by high fat diets. PpargΔHep reduced HFCF-induced NASH progression without altering steatosis, reduced the expression of key genes involved in hepatic fibrosis in HFCF-fed male and female mice, and decreased the area of collagen-stained fibrosis in the liver of HFCF-fed male mice. Moreover, transcriptomic and metabolomic data suggested that HFCF-diet regulated hepatic amino acid metabolism in a hepatocyte PPARγ-dependent manner. PpargΔHep increased betaine-homocysteine s-methyltransferase expression and reduced homocysteine levels in HFCF-fed male mice. In addition, in a cohort of 102 obese patients undergoing bariatric surgery with liver biopsies, 16 cases were scored with NASH and were associated with increased insulin resistance and hepatic PPARγ expression. Our study shows that hepatocyte PPARγ expression is associated with NASH in mice and humans. In male mice, hepatocyte PPARγ negatively regulates methionine metabolism and contributes to the progression of fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Transcript profiling: Gene Expression Omnibus (GEO) # GSE200352.

Abbreviations

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

LF/LFD:

Low fat diet

HF/HFD:

High fat diet

HFCF:

High fat, cholesterol and fructose

BMI:

Body mass index

HbA1c:

Glycated hemoglobin A1c

HOMA-IR:

Homeostatic model assessment for insulin resistance

ALT:

Alanine aminotransferase

TG:

Triglycerides

NEFA:

Non-esterified fatty acids

GTT:

Glucose tolerance test

ITT:

Insulin tolerance test

H&E:

Hematoxylin and eosin

PPARγ:

Peroxisome proliferator-activated receptor gamma

DNL:

De novo lipogenesis

Pparg ΔHep :

Adult-onset hepatocyte-specific PPARγ knockout

TZD:

Thiazolidinediones

NAS:

NAFLD Activity Score

DEG:

Differentially expressed gene

GO:

Gene ontology

SAM:

S-adenosylmethionine

Hcy:

Homocysteine

References

  1. Younossi ZM, Tampi RP, Racila A, Qiu Y, Burns L, Younossi I, Nader F (2020) Economic and clinical burden of nonalcoholic steatohepatitis in patients with type 2 diabetes in the US. Diabetes Care 43(2):283–289

    Article  PubMed  Google Scholar 

  2. Rich NE, Oji S, Mufti AR, Browning JD, Parikh ND, Odewole M, Mayo H, Singal AG (2018) Racial and ethnic disparities in nonalcoholic fatty liver disease prevalence, severity, and outcomes in the united states: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 16(2):198-210 e2

    Article  PubMed  Google Scholar 

  3. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ (2018) Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24(7):908–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Loomba R, Friedman SL, Shulman GI (2021) Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184(10):2537–2564

    Article  CAS  PubMed  Google Scholar 

  5. Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14(7):397–411

    Article  CAS  PubMed  Google Scholar 

  6. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312

    Article  CAS  PubMed  Google Scholar 

  7. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM (2001) PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7(1):48–52

    Article  CAS  PubMed  Google Scholar 

  8. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566

    Article  CAS  PubMed  Google Scholar 

  9. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF, Flier JS (1997) Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 99(10):2416–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pettinelli P, Videla LA (2011) Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab 96(5):1424–1430

    Article  CAS  PubMed  Google Scholar 

  11. Lima-Cabello E, Garcia-Mediavilla MV, Miquilena-Colina ME, Vargas-Castrillon J, Lozano-Rodriguez T, Fernandez-Bermejo M, Olcoz JL, Gonzalez-Gallego J, Garcia-Monzon C, Sanchez-Campos S (2011) Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci (Lond) 120(6):239–250

    Article  CAS  PubMed  Google Scholar 

  12. Nakamuta M, Kohjima M, Morizono S, Kotoh K, Yoshimoto T, Miyagi I, Enjoji M (2005) Evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 16(4):631–635

    CAS  PubMed  Google Scholar 

  13. Lee SM, Pusec CM, Norris GH, de Jesus A, Diaz-Ruiz A, Muratalla JT, Sarmento-Cabral A, Guzman G, Layden BT, Cordoba-Chacon J (2021) Hepatocyte-specific loss of PPARγ protects mice from NASH, and increases the therapeutic effects of rosiglitazone in the liver. Cell Mol Gastroenterol Hepatol 11(5):1291–1311

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee SM, Muratalla J, Diaz-Ruiz A, Remon-Ruiz P, McCann M, Liew CW, Kineman RD, Cordoba-Chacon J (2021) Rosiglitazone requires hepatocyte PPARgamma expression to promote steatosis in male mice with diet-induced obesity. Endocrinology 162(11):bqab175

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cordoba-Chacon J (2020) Loss of hepatocyte-specific PPARgamma expression ameliorates early events of steatohepatitis in mice fed the methionine and choline-deficient diet. PPAR Res 2020:9735083

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wolf Greenstein A, Majumdar N, Yang P, Subbaiah PV, Kineman RD, Cordoba-Chacon J (2017) Hepatocyte-specific, PPARgamma-regulated mechanisms to promote steatosis in adult mice. J Endocrinol 232(1):107–121

    Article  PubMed  Google Scholar 

  17. Gao M, Ma Y, Alsaggar M, Liu D (2016) Dual outcomes of rosiglitazone treatment on fatty liver. AAPS J 18(4):1023–1031

    Article  CAS  PubMed  Google Scholar 

  18. Moran-Salvador E, Titos E, Rius B, Gonzalez-Periz A, Garcia-Alonso V, Lopez-Vicario C, Miquel R, Barak Y, Arroyo V, Claria J (2013) Cell-specific PPARgamma deficiency establishes anti-inflammatory and anti-fibrogenic properties for this nuclear receptor in non-parenchymal liver cells. J Hepatol 59(5):1045–1053

    Article  CAS  PubMed  Google Scholar 

  19. Moran-Salvador E, Lopez-Parra M, Garcia-Alonso V, Titos E, Martinez-Clemente M, Gonzalez-Periz A, Lopez-Vicario C, Barak Y, Arroyo V, Claria J (2011) Role for PPARgamma in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J 25(8):2538–2550

    Article  CAS  PubMed  Google Scholar 

  20. Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H, Kohgo Y, Okumura T (2005) Increased expression of PPARgamma in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun 336(1):215–222

    Article  CAS  PubMed  Google Scholar 

  21. Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML (2003) Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 278(36):34268–34276

    Article  CAS  PubMed  Google Scholar 

  22. Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B Jr, Reitman ML, Gonzalez FJ (2003) Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 111(5):737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Conti A, Tryndyak V, Willett RA, Borowa-Mazgaj B, Watson A, Patton R, Khare S, Muskhelishvili L, Olson GR, Avigan MI, Cerniglia CE, Ross SA, Sanyal AJ, Beland FA, Rusyn I, Pogribny IP (2020) Characterization of the variability in the extent of nonalcoholic fatty liver induced by a high-fat diet in the genetically diverse Collaborative Cross mouse model. FASEB J 34(6):7773–7785

    Article  PubMed  Google Scholar 

  24. Drescher HK, Weiskirchen R, Fulop A, Hopf C, de San Roman EG, Huesgen PF, de Bruin A, Bongiovanni L, Christ A, Tolba R, Trautwein C, Kroy DC (2019) The influence of different fat sources on steatohepatitis and fibrosis development in the western diet mouse model of non-alcoholic steatohepatitis (NASH). Front Physiol 10:770

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gaskell H, Ge X, Desert R, Das S, Han H, Lantvit D, Guzman G, Nieto N (2020) Ablation of Hmgb1 in intestinal epithelial cells causes intestinal lipid accumulation and reduces NASH in mice. Hepatol Commun 4(1):92–108

    Article  CAS  PubMed  Google Scholar 

  26. Clapper JR, Hendricks MD, Gu G, Wittmer C, Dolman CS, Herich J, Athanacio J, Villescaz C, Ghosh SS, Heilig JS, Lowe C, Roth JD (2013) Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am J Physiol Gastrointest Liver Physiol 305(7):G483–G495

    Article  CAS  PubMed  Google Scholar 

  27. Cordoba-Chacon J, Gahete MD, McGuinness OP, Kineman RD (2014) Differential impact of selective GH deficiency and endogenous GH excess on insulin-mediated actions in muscle and liver of male mice. Am J Physiol Endocrinol Metab 307(10):E928–E934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bedossa P, Poitou C, Veyrie N, Bouillot JL, Basdevant A, Paradis V, Tordjman J, Clement K (2012) Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56(5):1751–1759

    Article  PubMed  Google Scholar 

  29. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ, N. Nonalcoholic Steatohepatitis Clinical Research (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321

    Article  PubMed  Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cordoba-Chacon J, Gahete MD, Castano JP, Kineman RD, Luque RM (2011) Somatostatin and its receptors contribute in a tissue-specific manner to the sex-dependent metabolic (fed/fasting) control of growth hormone axis in mice. Am J Physiol Endocrinol Metab 300(1):E46-54

    Article  CAS  PubMed  Google Scholar 

  32. Cordoba-Chacon J, Sarmento-Cabral A, Del Rio-Moreno M, Diaz-Ruiz A, Subbaiah PV, Kineman RD (2018) Adult-onset hepatocyte GH resistance promotes NASH in male mice, without severe systemic metabolic dysfunction. Endocrinology 159(11):3761–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques PE, Li S, Xia J (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49(W1):W388–W396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kineman R, Majumdar N, Subbaiah PV, Cordoba-Chacon J (2016) Hepatic PPARγ is not essential for the rapid development of steatosis following loss of hepatic GH signaling, in adult male mice. Endocrinology 157(50):1728–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee YJ, Ko EH, Kim JE, Kim E, Lee H, Choi H, Yu JH, Kim HJ, Seong JK, Kim KS, Kim JW (2012) Nuclear receptor PPARgamma-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis. Proc Natl Acad Sci USA 109(34):13656–13661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu S, Matsusue K, Kashireddy P, Cao WQ, Yeldandi V, Yeldandi AV, Rao MS, Gonzalez FJ, Reddy JK (2003) Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 278(1):498–505

    Article  CAS  PubMed  Google Scholar 

  37. Chen NC, Yang F, Capecci LM, Gu Z, Schafer AI, Durante W, Yang XF, Wang H (2010) Regulation of homocysteine metabolism and methylation in human and mouse tissues. FASEB J 24(8):2804–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dai H, Wang W, Tang X, Chen R, Chen Z, Lu Y, Yuan H (2016) Association between homocysteine and non-alcoholic fatty liver disease in Chinese adults: a cross-sectional study. Nutr J 15(1):102

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dai Y, Zhu J, Meng D, Yu C, Li Y (2016) Association of homocysteine level with biopsy-proven non-alcoholic fatty liver disease: a meta-analysis. J Clin Biochem Nutr 58(1):76–83

    Article  CAS  PubMed  Google Scholar 

  40. Torres L, Garcia-Trevijano ER, Rodriguez JA, Carretero MV, Bustos M, Fernandez E, Eguinoa E, Mato JM, Avila MA (1999) Induction of TIMP-1 expression in rat hepatic stellate cells and hepatocytes: a new role for homocysteine in liver fibrosis. Biochim Biophys Acta 1455(1):12–22

    Article  CAS  PubMed  Google Scholar 

  41. Pacana T, Cazanave S, Verdianelli A, Patel V, Min HK, Mirshahi F, Quinlivan E, Sanyal AJ (2015) Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease. PLoS ONE 10(8):e0136822

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dubois V, Eeckhoute J, Lefebvre P, Staels B (2017) Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest 127(4):1202–1214

    Article  PubMed  PubMed Central  Google Scholar 

  43. Francque S, Verrijken A, Caron S, Prawitt J, Paumelle R, Derudas B, Lefebvre P, Taskinen MR, Van Hul W, Mertens I, Hubens G, Van Marck E, Michielsen P, Van Gaal L, Staels B (2015) PPARalpha gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol 63(1):164–173

    Article  CAS  PubMed  Google Scholar 

  44. Ratziu V, Charlotte F, Bernhardt C, Giral P, Halbron M, Lenaour G, Hartmann-Heurtier A, Bruckert E, Poynard T, Group LS (2010) Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 51(2):445–453

    Article  CAS  PubMed  Google Scholar 

  45. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia J, Unalp A, Van Natta M, Clark J, Brunt EM, Kleiner DE, Hoofnagle JH, Robuck PR, Nash CRN (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362(18):1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jia X, Zhai T (2019) Integrated analysis of multiple microarray studies to identify novel gene signatures in non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 10:599

    Article  PubMed  Google Scholar 

  47. Namjou B, Lingren T, Huang Y, Parameswaran S, Cobb BL, Stanaway IB, Connolly JJ, Mentch FD, Benoit B, Niu X, Wei WQ, Carroll RJ, Pacheco JA, Harley ITW, Divanovic S, Carrell DS, Larson EB, Carey DJ, Verma S, Ritchie MD, Gharavi AG, Murphy S, Williams MS, Crosslin DR, Jarvik GP, Kullo IJ, Hakonarson H, Li R, Xanthakos SA, Harley JB (2019) GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network. BMC Med 17(1):135

    Article  PubMed  PubMed Central  Google Scholar 

  48. Frohlich J, Kovacovicova K, Mazza T, Emma MR, Cabibi D, Foti M, Sobolewski C, Oben JA, Peyrou M, Villarroya F, Soresi M, Rezzani R, Cervello M, Bonomini F, Alisi A, Vinciguerra M (2020) GDF11 induces mild hepatic fibrosis independent of metabolic health. Aging (Albany NY) 12(20):20024–20046

    Article  CAS  PubMed  Google Scholar 

  49. Wang W, Xu MJ, Cai Y, Zhou Z, Cao H, Mukhopadhyay P, Pacher P, Zheng S, Gonzalez FJ, Gao B (2017) Inflammation is independent of steatosis in a murine model of steatohepatitis. Hepatology 66(1):108–123

    Article  CAS  PubMed  Google Scholar 

  50. Kawashita E, Ishihara K, Nomoto M, Taniguchi M, Akiba S (2019) A comparative analysis of hepatic pathological phenotypes in C57BL/6J and C57BL/6N mouse strains in non-alcoholic steatohepatitis models. Sci Rep 9(1):204

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kiourtis C, Wilczynska A, Nixon C, Clark W, May S, Bird TG (2021) Specificity and off-target effects of AAV8-TBG viral vectors for the manipulation of hepatocellular gene expression in mice. Biol Open 10(9):bio058678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vidal-Puig A, Jimenez-Linan M, Lowell BB, Hamann A, Hu E, Spiegelman B, Flier JS, Moller DE (1996) Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest 97(11):2553–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang YL, Hernandez-Ono A, Siri P, Weisberg S, Conlon D, Graham MJ, Crooke RM, Huang LS, Ginsberg HN (2006) Aberrant hepatic expression of PPARgamma2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. J Biol Chem 281(49):37603–37615

    Article  CAS  PubMed  Google Scholar 

  54. Schadinger SE, Bucher NL, Schreiber BM, Farmer SR (2005) PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab 288(6):E1195–E1205

    Article  CAS  PubMed  Google Scholar 

  55. Zhang H, Leveille M, Courty E, Gunes A, Bich NN, Estall JL (2020) Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 319(5):E863–E876

    Article  CAS  PubMed  Google Scholar 

  56. Harris SE, Poolman TM, Arvaniti A, Cox RD, Gathercole LL, Tomlinson JW (2020) The American lifestyle-induced obesity syndrome diet in male and female rodents recapitulates the clinical and transcriptomic features of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 319(3):G345–G360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pafili K, Paschou SA, Armeni E, Polyzos SA, Goulis DG, Lambrinoudaki I (2022) Non-alcoholic fatty liver disease through the female lifespan: the role of sex hormones. J Endocrinol Invest 2022:1–15

    Google Scholar 

  58. Hansen HH, Ægidius HM, Oro D, Evers SS, Heeboll S, Eriksen PL, Thomsen KL, Bengtsson A, Veidal SS, Feigh M, Suppli MP, Knop FK, Gronbaek H, Miranda D, Trevaskis JL, Vrang N, Jelsing J, Rigbolt KTG (2020) Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol 20(1):210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Boland ML, Oro D, Tolbol KS, Thrane ST, Nielsen JC, Cohen TS, Tabor DE, Fernandes F, Tovchigrechko A, Veidal SS, Warrener P, Sellman BR, Jelsing J, Feigh M, Vrang N, Trevaskis JL, Hansen HH (2019) Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: Impact of dietary fat source. World J Gastroenterol 25(33):4904–4920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Radhakrishnan S, Yeung SF, Ke JY, Antunes MM, Pellizzon MA (2021) Considerations when choosing high-fat, high-fructose, and high-cholesterol diets to induce experimental nonalcoholic fatty liver disease in laboratory animal models. Curr Dev Nutr 5(12):nzab138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bjorkhem I (2002) Do oxysterols control cholesterol homeostasis? J Clin Invest 110(6):725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y, Breevoort SR, Angdisen J, Fu M, Schmidt DR, Holmstrom SR, Kliewer SA, Mangelsdorf DJ, Schulman IG (2012) Liver LXRalpha expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest 122(5):1688–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bhushan B, Banerjee S, Paranjpe S, Koral K, Mars WM, Stoops JW, Orr A, Bowen WC, Locker J, Michalopoulos GK (2019) Pharmacologic inhibition of epidermal growth factor receptor suppresses nonalcoholic fatty liver disease in a murine fast-food diet model. Hepatology 70(5):1546–1563

    Article  CAS  PubMed  Google Scholar 

  64. Li Z, Wang F, Liang B, Su Y, Sun S, Xia S, Shao J, Zhang Z, Hong M, Zhang F, Zheng S (2020) Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Targ Ther 5(1):280

    Article  CAS  Google Scholar 

  65. Radziejewska A, Muzsik A, Milagro FI, Martinez JA, Chmurzynska A (2020) One-carbon metabolism and nonalcoholic fatty liver disease: the crosstalk between nutrients, microbiota, and genetics. Lifestyle Genom 13(2):53–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Angelie Bacon, Danielle Pins, Dr. Gregory Norris for their technical assistance. Fixed samples and H&E-stained slides were processed by the Research Histology Core at the University of Illinois at Chicago. Metabolomics services were performed by the Metabolomics Core Facility at Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Funding

This work was supported by the National Institutes of Health K01DK125525, R01DK131038, R03DK129419 [JCC], Talento Grant 2018-T1/BMD-11966 [ADR], Institute of Health Carlos III (ISCIII) PI20/00505, CP19/00098 [BRM].

Author information

Authors and Affiliations

Authors

Contributions

JCC conceived and designed experiments. JCC and SML wrote the manuscript. JCC, SML, JM, and ADR performed the experiment and analyzed the data. SML, SK, and GG performed a pathological analysis of the liver sections. MDF and BRM performed the experiments in patient samples and analyzed the data. SML, JM, ADR, and BRM revised and edited the manuscript.

Corresponding author

Correspondence to Jose Cordoba-Chacon.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Preprint server: An early version of this study was uploaded to bioRxiv, https://doi.org/10.1101/2022.06.06.494901.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 264 KB)

Supplementary file2 (XLSX 264 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.M., Muratalla, J., Karimi, S. et al. Hepatocyte PPARγ contributes to the progression of non-alcoholic steatohepatitis in male and female obese mice. Cell. Mol. Life Sci. 80, 39 (2023). https://doi.org/10.1007/s00018-022-04629-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04629-z

Keywords

Navigation