Skip to main content
Log in

Characterization and Bioactivity in High Cristobalite-Nepheline-Apatite Glass and Glass Ceramics

  • High-Performance Ceramics
  • Published:
Interceram - International Ceramic Review

Abstract

Within the Na2O-CaO-Al2O3-SiO2-P2O5-F system, in the nominal binary nepheline-fluorapatite phases were prepared and investigated. Transparent glasses were obtained in a high nominal ratio of nepheline, i.e. 75, 80, 85 and 90%, whereas the low ones, i.e. 25, 50 and 70% gave devitrified glasses. The thermal behaviour of the glasses and both the crystalline phases and the microstructure of the glass ceramic were investigated. Moreover, the bioactivity of glasses and glass ceramics was also examined. Nepheline, fluorapatite and high cristobalite were the main crystalline phases developed through the heat-treatment process of the glass powders in the 800–1250°C temperature range. High cristobalite and nepheline were developed as the main phases that were treated either at high or low temperature. The microstructure shows spread crystals and flake-like crystals embedded in a glassy matrix. In vitro, the bioactivity testing of the glasses and the corresponding glass-ceramic, sintered at 900°C, showed that the sample containing 75% nominal nepheline was the best regarding in the bioactivity behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Höland, W., Beall, G.H.: Glass-Ceramic Technology. The American Ceramic Society, Westerville, OH (2002)

    Google Scholar 

  2. Mac Dowell, J.F.: Microwave heating of nepheline glass ceramics. J. Am. Ceram. Soc. 58 (1975) 258–259

    Article  Google Scholar 

  3. Wang, M.C., Wu, N.C., Hon, M.H.: Preparation of nepheline glass ceramics and their application as dental porcelain. Mater. Chem. Phys. 37 (1994) 370–375

    Article  CAS  Google Scholar 

  4. Hamzawy, E.M.A., El-Meliegy, E.M.: Preparation of nepheline glass ceramics for dental applications. Mater. Chem. Phys. 112 (2008) 432–435

    Article  CAS  Google Scholar 

  5. Hamzawy, E.M.A., El-Meliegy, E.M.: Crystallization in the Na2O-CaO-Al2O3-SiO2-(LiF) glass compositions. Ceram. Int. 33 (2007) 227–231

    Article  CAS  Google Scholar 

  6. Hamzawy, E.M.A., Leonelli, C.: Crystallization and substitutions of Fluor-Mg-rich-terite (Li, Na, K)2 Mg6Si8 O22 F2 glasses. European J. Glass Sci. and Technol., Part A 48 (2007) 316–321

    CAS  Google Scholar 

  7. Kivlighn, H.D.J.R., Russak, M.A.: Formation of nepheline glass ceramics using Nb2O5 as a nucleation catalyst. J. of the Am. Ceram. Soc. 57 (1974) [9] 382–385

    Article  CAS  Google Scholar 

  8. Megles J.E.: Nepheline-feldspar glass ceramics. US 3653865 A, (1970)

  9. Das, S.K., Dwivedi, R.N., Thiagarajan, S., Thakur, R.L.: Nucleation and crystallisation of some Na2O-Al2O3-SiO2 and Na2O-BaO-Al2O3-SiO2 glasses J. Non Cryst. Solids 38–39 (1980) 729–734

    Article  Google Scholar 

  10. Moisescu, C., Jana, C., Rüssel, C.: Crystallization of rod-shaped fluoroapatite from glass melts in the system SiO2-Al2O3-CaO-P2O5-Na2O-K2O-F-. J. Non-Cryst. Solids 248 (1999) 169–175

    Article  CAS  Google Scholar 

  11. Hench, L.: Chronology of bioactive glass development and clinical applications. New J. Glass and Ceram. 3 (2013) 67–73

    Article  Google Scholar 

  12. Clark, A.E., Hench, L.L.: The influence of surface chemistry on implant interface histology: A theoretical basis for implant materials selection. J. Biomed. Mater. Res. 10 (1976) 161–174

    Article  CAS  Google Scholar 

  13. Hollander, M., Wolfe, D.A.: Nonparametric statistical methods.: John Wiley & Sons, Inc., New York (1973), ISBN-13: 9780471406358

    Google Scholar 

  14. JCPDS-International Center for diffraction Data ICDD, PDF-2 Data Base (Sets 1–51 plus 70–89), 2001

  15. Buerger, M.J.: The stuffed derivatives of silica matrix. Am. Miner. 39 (1954) 600–614

    CAS  Google Scholar 

  16. Saltzberg, M.A., Bors, S.L., Bergna, H., Winchester, S.C.: Synthesis of chemically stabilized cristobalite. J. Am. Ceram. Soc. 75 (1992) 89–95

    Article  CAS  Google Scholar 

  17. Lee, S.J., Lee, C.H.: Critical size effect for chemically doped α-cristobalite transformation. Mat.. Lett. 45 (2000) 175–179

    Article  CAS  Google Scholar 

  18. Thomas, E.S., Thompson, J.T., Withers, R.L.: Further investigation of the stabilization of α-cristobalite. J. Am. Ceram. Soc. 77 (1994) 49–56

    Article  CAS  Google Scholar 

  19. Perrotta, A.J., Grubbs, D.K., Martin, E.S., Dando, N.R., McKinstry, H.A., Huang, C.Y.: Chemical stabilization of α-cristobalite J. Am. Ceram. Soc. 72 (1989) 441–447

    Article  CAS  Google Scholar 

  20. Xu, Y.N., Ching, W.Y.: Electronic and optical properties of all polymorphic forms of silicon dioxide. Phys. Rev. B. 44 (1991) 11048–11059

    Article  CAS  Google Scholar 

  21. Alharbi, O.A., Zaki, D.Y., Hamzawy, E.M.A.: Crystallization control of cristobalite and tridymite in sintered glass ceramics. Silicon 4 (2012) 281–287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. A. Hamzawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzawy, E.M.A., Alharbi, O.A. & Zaki, D.Y. Characterization and Bioactivity in High Cristobalite-Nepheline-Apatite Glass and Glass Ceramics. Interceram. - Int. Ceram. Rev. 65, 32–36 (2016). https://doi.org/10.1007/BF03401151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401151

Keywords

Navigation