Skip to main content

A Novel Approach to Docking System for Autonomous Unmanned Aerial Vehicles

  • Conference paper
  • First Online:
Data Science and Applications (ICDSA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 818))

Included in the following conference series:

  • 195 Accesses

Abstract

Unmanned aerial vehicles have made rapid progress over the past two decades. One of the major problems of the UAV and drones is their short battery life which also limits the time of flight. Developing a system whereby an autonomous drone could be sent to identify and take photos, collect telemetry of flight, videography, collect data, hold back, and sense its battery level and then return to a charging station to which it could automatically connect, and at the end return to its task when it is fully recharged decreases the degree of human supervision. This paper presents a system that has been developed for the autonomous docking of drones. The system uses open-source programmes and publicly accessible hardware. The objective of this manuscript is to demonstrate the utilisation of open-source object detection algorithms for the purpose of docking unmanned aerial vehicles (UAVs). Additionally, a novel docking system for quadcopters will be developed through the incorporation of unique tags and commercially available components, accompanied by certain modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grlj, C., Krznar, N., & Pranjić, M. (2022). A decade of UAV docking stations: A brief overview of mobile and fixed landing platforms. Drones, 6, 17.

    Article  Google Scholar 

  2. Mitra, S. (2013). Autonomous quadcopter docking system ECE M.ENG. design project final report.

    Google Scholar 

  3. Caruso, B., Fatakdawala, M., Patil, A. A., Chen, G., & Wilde, M. (2021). Demonstration of in-flight docking between quadcopters and fixed-wing UAV. In 2021 IEEE Aerospace Conference (Vol. 50100, pp. 1–9).

    Google Scholar 

  4. Mannar, S., Thummalapeta, M., Saksena, S., & Omkar, S. N. (2018). Vision-based control for aerial obstacle avoidance in forest environments. IFAC-PapersOnLine, 51, 480–485. https://doi.org/10.1016/j.ifacol.2018.05.081

    Article  Google Scholar 

  5. Jayaweera, H., & Hanoun, S. (2021). Real-time obstacle avoidance for unmanned aerial vehicles (UAVs) (pp. 2622–2627).

    Google Scholar 

  6. Allasia, G., Rizzo, A., & Valavanis, K. (2021). Quadrotor UAV 3D path planning with optical-flow-based obstacle avoidance. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1029–1036).

    Google Scholar 

  7. Gunturu, R., Durgaa, K. N., Harshaa, T. S., & Ahamed, S. F. (2020). Development of drone based delivery system using pixhawk flight controller. Transportation Modes eJournal.

    Google Scholar 

  8. Balaram, J., Aung, M. M., & Golombek, M. P. (2021). The ingenuity helicopter on the perseverance rover. Space Science Reviews, 217.

    Google Scholar 

  9. Miyazaki, R., Jiang, R., Paul, H., Ono, K., & Shimonomura, K. (2018). Airborne docking for multi-rotor aerial manipulations. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4708–4714).

    Google Scholar 

  10. Thuan, P. N., Queralta, J. P., & Westerlund, T. (2023). Vision-based safe autonomous UAV docking with panoramic sensors.

    Google Scholar 

  11. Choi, A. J., Park, J., & Han, J.-H. (2022). Automated aerial docking system using onboard vision-based deep learning. Journal of Aerospace Information Systems, 19(6), 421–436. https://doi.org/10.2514/1.I011053

    Article  Google Scholar 

  12. Mukerjee, L., Yadav, M., Choraria, A., Tendolkar, A., Hariharan, A., & Pai, M. M. M. (2022). Aerodock (a smart, autonomous charging and docking station for unmanned aerial vehicles). Journal of Physics: Conference Series, 2161(1), 012058. https://doi.org/10.1088/1742-6596/2161/1/012058

    Article  Google Scholar 

  13. Yeh, E., Mohanroy, J., Ciobanu, C., & Scrosati, C. (2023). Autonomous food delivery drone.

    Google Scholar 

  14. Dekker, D. (2022). Developing a graphical user interface for a universal drone docking system to aid inspection use-cases [B.S. thesis, University of Twente].

    Google Scholar 

  15. Mirza, K. Z., Sharma, M., Bagare, S. V., Shukla, D., & Pant, R. S. (2023). A study on autonomous mechanisms for swapping of batteries on unmanned aerial vehicles. https://doi.org/10.2514/6.2023-1142

  16. Bláha, L., Severa, O., Goubej, M., Myslivec, T., & Reitinger, J. (2023). Automated drone battery management system—Droneport: Technical overview. Drones, 7(4), 234. https://doi.org/10.3390/drones7040234

    Article  Google Scholar 

  17. Mattins, R. F., Vasudevan, P., Srivarshan, S., Maheswari, R., & Kanagraj, V. (2023). Medication extender drone using CoppeliaSim. In Computational health informatics for biomedical applications (pp. 183–203). Apple Academic Press.

    Google Scholar 

  18. Ge, Z., Jiang, J., Pugh, E., Marshall, B., Yan, Y., & Sun, L. (2023). Vision-based UAV landing with guaranteed reliability in adverse environment. Electronics, 12(4), 967. https://doi.org/10.3390/electronics12040967

    Article  Google Scholar 

  19. Racette, J., Dunaway, C., Escarcega, M. A., Montoya, J., Dinelli, C., Androulakis, V., Khaniani, H., Shao, S., Roghanchi, P., & Hassanalian, M. (2023). Research and design of precision-landing drone in an underground GPS-denied environment.

    Google Scholar 

  20. Hutcherson, Z. S. (2023). A literary review on the current state of drone technology in regard to conservation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Gangapurwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gangapurwala, P., Singh, I., Satam, S., Khanapuri, J., Mishra, D. (2024). A Novel Approach to Docking System for Autonomous Unmanned Aerial Vehicles. In: Nanda, S.J., Yadav, R.P., Gandomi, A.H., Saraswat, M. (eds) Data Science and Applications. ICDSA 2023. Lecture Notes in Networks and Systems, vol 818. Springer, Singapore. https://doi.org/10.1007/978-981-99-7862-5_24

Download citation

Publish with us

Policies and ethics