Skip to main content

Effective Machine Learning-Based Heart Disease Prediction Model

  • Conference paper
  • First Online:
Proceedings of Data Analytics and Management (ICDAM 2023)

Abstract

One of the most serious health issues affecting people today is heart disease. Identifying cardiac disease can be challenging as several common risk elements including high cholesterol, diabetes, irregular heart rate, high blood pressure, and various medical conditions can make diagnosis difficult. Due to these limitations, researchers are increasingly adopting cutting-edge techniques like machine learning and data mining to forecast disease. In this study, we assess just the following symptoms: age, sex, chest pain type range of 1–5, serum cholesterol, maximum heart rate attained, overnight sugar levels range of 0 or 1, and resting electrocardiogram range of 0–2, ST depression brought on by activity compared to rest, ST section for the peak reps, exercise-induced angina, by using fluoroscopy and Thal, the main vessels’ number (0–3) were colored. The Cleveland cardiovascular database from the UCI repository is one of the datasets which is used in the present study, then applying a machine learning approach and classifying whether it is affected or not. We are using Ridge Classifier, Linear Discriminant Analysis, Extra Trees Classifier, Naive Bayes, and Logistic Regression Model. Finally, comparison of different machine learning-based available methods using the same database with the performance of a proposed method for the detection of heart disease has been done. Linear Discriminant Analysis has given accuracy (acc) and specificity (spec) that is 85.71% and 93.87%, respectively. But in the case of sensitivity (sen) of Ridge Classifier 83.33% which is best as compared with other classifier, overall, the Linear Discriminant Analysis gives better result as compared with other classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sarah S, Gourisaria MK, Khare S, Das H (2022) Heart disease prediction using core machine learning techniques—a comparative study. Lecture Notes Netw Syst 318:247–260. https://doi.org/10.1007/978-981-16-5689-7_22/COVER

    Article  Google Scholar 

  2. Chang V, Bhavani VR, Xu AQ, Hossain MA (2022) An artificial intelligence model for heart disease detection using machine learning algorithms. Healthcare Anal 2:100016. https://doi.org/10.1016/J.HEALTH.2022.100016

    Article  Google Scholar 

  3. Debauche O, Nkamla Penka JB, Mahmoudi S et al (2022) RAMi: a new real-time internet of medical things architecture for elderly patient monitoring. Information 13:423. https://doi.org/10.3390/INFO13090423

  4. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 22 Apr 2023

  5. Santos-Pereira J, Gruenwald L, Bernardino J (2022) Top data mining tools for the healthcare industry. J King Saud Univ Comput Inform Sci 34:4968–4982. https://doi.org/10.1016/J.JKSUCI.2021.06.002

    Article  Google Scholar 

  6. El-Shafiey MG, Hagag A, El-Dahshan ESA, Ismail MA (2022) A hybrid GA and PSO optimized approach for heart-disease prediction based on random forest. Multimed Tools Appl 81:18155–18179. https://doi.org/10.1007/S11042-022-12425-X/TABLES/17

    Article  Google Scholar 

  7. Kim JO, Jeong YS, Kim JH et al (2021) Machine learning-based cardiovascular disease prediction model: a cohort study on the Korean national health insurance service health screening database. Diagnostics 11:943. https://doi.org/10.3390/DIAGNOSTICS11060943/S1

    Article  Google Scholar 

  8. Harjai S, Khatri SK (2019) An intelligent clinical decision support system based on artificial neural network for early diagnosis of cardiovascular diseases in rural areas. In: Proceedings of 2019 amity international conference on artificial intelligence, AICAI 2019, pp 729–736. https://doi.org/10.1109/AICAI.2019.8701237

  9. Yazdani A, Varathan KD, Chiam YK et al (2021) A novel approach for heart disease prediction using strength scores with significant predictors. BMC Med Inform Decis Mak 21:1–16. https://doi.org/10.1186/S12911-021-01527-5/TABLES/14

    Article  Google Scholar 

  10. Katarya R, Meena SK (2021) Machine learning techniques for heart disease prediction: a comparative study and analysis. Health Technol (Berl) 11:87–97. https://doi.org/10.1007/S12553-020-00505-7/METRICS

    Article  Google Scholar 

  11. Nishat MM, Faisal F, Hasan Udoy M (2021) Performance evaluation and comparative analysis of different machine learning algorithms in predicting cardiovascular disease

    Google Scholar 

  12. Wadhawan S, Maini R (2022) ETCD: an effective machine learning based technique for cardiac disease prediction with optimal feature subset selection. Knowl Based Syst 255:109709. https://doi.org/10.1016/J.KNOSYS.2022.109709

    Article  Google Scholar 

  13. Wahyu EJ, Chairani C, Chairani C (2022) The application of particle swarm optimization using Naive Bayes method for predicting heart disease. In: Proceeding of international conference on information technology and business, pp 64–71

    Google Scholar 

  14. Taran S, Bajaj V (2018) Rhythm-based identification of alcohol EEG signals. IET Sci Meas Technol 12:343–349. https://doi.org/10.1049/iet-smt.2017.0232

    Article  Google Scholar 

  15. UCI machine learning repository: heart disease data set. https://archive.ics.uci.edu/ml/datasets/heart+disease. Accessed 22 Apr 2023

  16. Ahamed J, Mir RN, Chishti MA (2022) Industry 4.0 oriented predictive analytics of cardiovascular diseases using machine learning, hyperparameter tuning and ensemble techniques. Ind Robot 49:544–554. https://doi.org/10.1108/IR-10-2021-0240/FULL/XML

    Article  Google Scholar 

  17. Ahamed J, Koli AM, Ahmad K et al CDPS-IoT: cardiovascular disease prediction system based on IoT using machine learning. Int J Interactive Multimedia Artif Intell 7:4. https://doi.org/10.9781/ijimai.2021.09.002

  18. Amma NGB (2012) Cardiovascular disease prediction system using genetic algorithm and neural network. In: 2012 international conference on computing, communication and applications, ICCCA 2012. https://doi.org/10.1109/ICCCA.2012.6179185

  19. Akella A, Akella S (2021) Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution. Future Sci OA 7.https://doi.org/10.2144/FSOA-2020-0206/ASSET/IMAGES/LARGE/FIGURE4.JPEG

  20. Kavitha M, Gnaneswar G, Dinesh R et al (2021) Heart disease prediction using hybrid machine learning model. In: Proceedings of the 6th international conference on inventive computation technologies, ICICT 2021, pp 1329–1333. https://doi.org/10.1109/ICICT50816.2021.9358597

  21. Srinivas P, Katarya R (2022) hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost. Biomed Signal Process Control 73:103456. https://doi.org/10.1016/J.BSPC.2021.103456

    Article  Google Scholar 

  22. Khennou F, Fahim C, Chaoui H, Chaoui NEH (2019) A machine learning approach: using predictive analytics to identify and analyze high risks patients with heart disease. Int J Mach Learn Comput 9:762–767. https://doi.org/10.18178/ijmlc.2019.9.6.870

  23. Setiawan NA, Venkatachalam PA, Fadzil A, Hani M (2009) Diagnosis of coronary artery disease using artificial intelligence based decision support system, pp 11–13

    Google Scholar 

  24. Bashir S, Almazroi AA, Ashfaq S et al (2021) A knowledge-based clinical decision support system utilizing an intelligent ensemble voting scheme for improved cardiovascular disease prediction. IEEE Access 9:130805–130822. https://doi.org/10.1109/ACCESS.2021.3110604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garima Chandel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saini, S.K., Chandel, G. (2023). Effective Machine Learning-Based Heart Disease Prediction Model. In: Swaroop, A., Polkowski, Z., Correia, S.D., Virdee, B. (eds) Proceedings of Data Analytics and Management. ICDAM 2023. Lecture Notes in Networks and Systems, vol 787. Springer, Singapore. https://doi.org/10.1007/978-981-99-6550-2_14

Download citation

Publish with us

Policies and ethics