Skip to main content

Fetal Cardiac Detection Using Deep Learning from Echocardiographic Image–A Survey

  • Conference paper
  • First Online:
IOT with Smart Systems ( ICTIS 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 720))

  • 310 Accesses

Abstract

Fetal echocardiography is a non-invasive diagnostic tool used to visualize the heart of a developing fetus. Machine learning algorithms can be used to aid in the analysis of these images and help detect any potential cardiac anomalies. This involves the use of supervised learning techniques, where the algorithm is trained on a large dataset of labeled images to learn the features and patterns associated with normal and abnormal heart structures. During the testing phase, the algorithm is then able to apply this knowledge to new images to make predictions about the presence of any cardiac anomalies. This technology can help improve the accuracy and speed of fetal echocardiography diagnoses and contribute to better outcomes for expectant mothers and their unborn children. In this paper we can survey the multiple machine learning and deep learning algorithms to improve the efficiency in disease prediction. The CNN can learn to identify features of fetal cardiac tumors and distinguish them from normal cardiac structures. This approach has the potential to improve the accuracy and efficiency of fetal cardiac tumor detection. To analyze the imaging and clinical features of fetal cardiac tumors, and to explore the relationship between tuberous sclerosis complex (TSC) and cardiac rhabdomyoma in the fetus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Castiglioni I et al (2021) AI applications to medical images: from machine learning to deep learning. Phys Med 83:9–24

    Google Scholar 

  2. Vo K et al (2020) An efficient and robust deep learning method with 1-D octave convolution to extract fetal electrocardiogram. Sensors 20(13):3757

    Google Scholar 

  3. Fiorentino MC et al (2023) A review on deep-learning algorithms for fetal ultrasound-image analysis. Med Image Anal 83:102629

    Google Scholar 

  4. Iftikhar P et al (2020) Artificial intelligence: a new paradigm in obstetrics and gynecology research and clinical practice. Cureus 12(2):e7124

    Google Scholar 

  5. Wang Q, Dong L, Liu G (2022) Value of ultrasonic image features in diagnosis of perinatal outcomes of severe preeclampsia on account of deep learning algorithm. Comput Math Methods Med 2022:4010339-1–4010339-10

    Google Scholar 

  6. Arnaout R et al (2020) Expert-level prenatal detection of complex congenital heart disease from screening ultrasound using deep learning. medRxiv

    Google Scholar 

  7. Wenjing H et al (2022) Automatic detection of secundum atrial septal defect in children based on color doppler echocardiographic images using convolutional neural networks. Front Cardiovasc Med 9:834285-1–834285-13

    Google Scholar 

  8. Nurmaini S et al (2020) Accurate detection of septal defects with fetal ultrasonography images using deep learning-based multiclass instance segmentation. IEEE Access 8:1–15

    Google Scholar 

  9. Tang X (2019) The role of artificial intelligence in medical imaging research. BJR Open 2:20190031

    Google Scholar 

  10. Murugesan M, Gopal KN, Saravanan S, Nandhakumar K, Navaladidhinesh S (2023) Recommendation of pesticides based on automation detection of citrus fruits and leaves diseases using deep learning. In: Ambient intelligence in health care. Smart innovation, systems and technologies, vol 317. Springer, Singapore, pp 105–116

    Google Scholar 

  11. Chen Z et al (2021) Artificial intelligence in obstetric ultrasound: an update and future applications. Front Med 8:733468-1–733468-9

    Google Scholar 

  12. Rachmatullah MN et al (2021) Convolutional neural network for semantic segmentation of fetal echocardiography based on four-chamber view. Bull Electr Eng Inf 10(4):1987–1996

    Google Scholar 

  13. Chamundeeswari G, Srinivasan S, Bharathi SP, Priya P, Kannammal GR, Rajendran S (2022) Optimal deep convolutional neural network based crop classification model on multispectral remote sensing images. Microprocess Microsyst 94:104626

    Google Scholar 

  14. Garcia-Canadilla P et al (2020) Machine learning in fetal cardiology: what to expect. Fetal Diagn Ther 47(5):363–372

    Google Scholar 

  15. Pradeep D, Bhuvaneswari A, Nandhini M, Begum AR, Swetha N (2022) Survey on attendance system using face recognition. In: Pervasive computing and social networking, Lecture notes in networks and systems, vol 475. Springer, Singapore, pp 407–420

    Google Scholar 

  16. Oei RAJ, Dezso MV, van Tulder MJP, Tordoir JJR, ter Braak RJEM, van Ginneken B (2019) Automated fetal echocardiogram analysis using deep learning. Sci Rep 9(1):9557

    Google Scholar 

  17. Kothandaraman D, Manickam M, Balasundaram A, Pradeep D, Arulmurugan A, Sivaraman AK, Rani S, Dey B, Balakrishna R (2022) Decentralized link failure prevention routing (DLFPR) algorithm for efficient internet of things. Intell Autom Soft Comput 34(1):655–666

    Google Scholar 

  18. Kim SS, Lee YHK, Kim HS (2020) Fetal cardiac anomaly classification using deep learning-based features from echocardiography images. Med Image Anal 58:101583

    Google Scholar 

  19. Karthik K, Nachammai M, Gandhi GN, Priyadharshini V, Shobika R (2022) Study of land cover classification from hyperspectral images using deep learning algorithm. In: Smys S, Lafata P, Palanisamy R, Kamel KA (eds) Computer networks and inventive communication technologies. Lecture notes on data engineering and communications technologies, vol 141. Springer, Singapore, pp 721–737

    Google Scholar 

  20. Gusmão GF et al (2022) Treating dataset imbalance in fetal echocardiography classification. Annal Comput Sci Inf Syst 32:3–9

    Google Scholar 

  21. Alamelu V, Thilagamani S (2022) Lion based butterfly optimization with improved YOLO-v4 for heart disease prediction using IoMT. Inf Technol Control 51(4):692–703

    Article  Google Scholar 

  22. Patra A, Noble JA (2019) Multi-anatomy localization in fetal echocardiography videos. In: 2019 IEEE 16th International symposium on biomedical imaging (ISBI 2019). IEEE, pp 1761–1764

    Google Scholar 

  23. Pandey SK, Vanithamani S, Shahare P, Ahmad SS, Thilagamani S, Hassan MM, Amoatey ET (2022) Machine learning-based data analytics for IoT-enabled industry automation. Wireless Commun Mob Comput 2022:8794749-1–8794749-12

    Google Scholar 

  24. Nidhi DK et al (2021) Convolutional neural networks for the assessment of fetal echocardiography. In: Proceedings of the 10th IOE graduate conference, vol 10, pp 249–254

    Google Scholar 

  25. Xu L et al (2020) Convolutional-neural-network-based approach for segmentation of apical four-chamber view from fetal echocardiography. IEEE Access 8:80437–80446

    Google Scholar 

  26. Fan J, Liu Q, Wei Y, Wang S (2018) Automatic fetal heart segmentation using fully convolutional networks. J Med Syst 42(7):271

    Google Scholar 

  27. Akilandeswari V, Kumar A, Thilagamani S, Subedha V, Kalpana V, Kaur K, Asenso E (2022) Minimum latency-secure key transmission for cloud-based internet of vehicles using reinforcement learning. Comput Intell Neurosci 2022:6296841-1–6296841-9

    Google Scholar 

  28. Fan J, Wei Y, Liu Q, Wang S (2017) Fetal heart segmentation using deep learning. In: Proceedings of the IEEE international conference on bioinformatics and biomedicine (BIBM), pp 128–131

    Google Scholar 

  29. Murugesan M, Thilagamani S (2022) Bayesian feed forward neural network-based efficient anomaly detection from surveillance videos. Intell Autom Soft Comput 34(1):389–405

    Google Scholar 

  30. Zhang X, Zhang Y, Cheng L, Song L, He Y, Liang X (2019) Fetal heart automatic segmentation using deep convolutional neural networks. In: Proceedings of the IEEE international conference on image processing (ICIP), pp 2299–2303

    Google Scholar 

  31. Saravanan S, Abirami T, Pandiaraja P (2018) Improve efficient keywords searching data retrieval process in cloud server. In: 2018 International conference on intelligent computing and communication for smart world (I2C2SW), Erode, India. IEEE, pp 219–223

    Google Scholar 

  32. Xiong Z, Song X, Wang Y, Ye D, Liu X, Zhang Y (2018) Fetal heart segmentation in echocardiography images using deep learning. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 3414–3420

    Google Scholar 

  33. Pandiaraja P, Aishwarya S, Indubala SV, Neethiga S, Sanjana K (2022) An analysis of e-commerce identification using sentimental analysis: a survey. In: International conference on computing in engineering and technology. ICCET 2022: Applied computational technologies. Smart innovation, systems and technologies, vol 303. Springer, Singapore, pp 742–754

    Google Scholar 

  34. Jeong JH, Kim J, Kim YH, Kim HS (2018) Automated fetal heart analysis using deep convolutional neural networks. In: Proceedings of the international conference on medical image computing and computer-assisted intervention (MICCAI), pp 215–223

    Google Scholar 

  35. Shankar A, Sumathi K, Pandiaraja P, Stephan T, Cheng X (2022) Wireless multimedia sensor network QoS bottleneck alert mechanism based on fuzzy logic. J Circ Syst Comput 31(11):2250198

    Google Scholar 

  36. Fan J, Liu Q, Wei Y, Wang S (2019) Automated fetal heart localization and segmentation using deep learning. J Med Syst 43(8):366

    Google Scholar 

  37. Pandiaraja P, Muthumanickam K (2022) Convolutional neural network-based approach to detect COVID-19 from chest x-ray images. In: Cyber security, privacy and networking. Lecture notes in networks and systems, vol 370. Springer, Singapore, pp 231–245

    Google Scholar 

  38. Qiu H, He L, Han Q, Fang X, Zhang L, Jiang Y (2019) Automatic fetal heart segmentation in ultrasound images using deep learning. J Med Syst 43(5):218

    Google Scholar 

  39. Pandiaraja P, Muthumanickam K, Kumar RP (2023) A graph-based model for discovering host-based hook attacks. In: Smart technologies in data science and communication. Lecture notes in networks and systems, vol 558. Springer, Singapore, pp 1–13

    Google Scholar 

  40. Sapitri AI et al (2023) Deep learning-based real time detection for cardiac objects with fetal ultrasound video. Inform Med Unlocked 36:101150

    Google Scholar 

  41. Nakatani S, Yamamoto K, Ohtsuki T (2023) Fetal arrhythmia detection based on labeling considering heartbeat interval. Bioengineering 10(1):48

    Article  Google Scholar 

  42. Divya MO, Vijaya MS (2023) Artificial intelligent models for automatic diagnosis of foetal cardiac anomalies: a meta-analysis. In: Proceedings of the international conference on cognitive and intelligent computing (ICCIC 2021), vol 2. Springer Nature Singapore Pte Ltd., Singapore, pp 179–192

    Google Scholar 

  43. Kahankova R et al (2023) Pregnancy in the time of COVID-19: towards Fetal monitoring 4.0. BMC Pregnancy Childbirth 23: 33-1–33-17

    Google Scholar 

  44. Keles E, Bagci U (2023) The past, current, and future of neonatal intensive care units with artificial intelligence. arXiv:2302.00225, arXiv:2302.00225v1, https://doi.org/10.48550/arXiv.2302.00225

  45. Attallah O, Ragab DA (2023) Auto-MyIn: automatic diagnosis of myocardial infarction via multiple GLCMs, CNNs, and SVMs. Biomed Signal Process Control 80 (Part 1):104273

    Article  Google Scholar 

  46. He D et al (2023) Automatic quantification of morphology on magnetic resonance images of the proximal tibia. Med Novel Technol Devices 17:100206

    Google Scholar 

  47. Piek M et al (2023) Fetal 3D cardiovascular cine image acquisition using radial sampling and compressed sensing. Magn Reson Med 89(2):594–604

    Google Scholar 

  48. Luijten B et al (2023) Ultrasound signal processing: from models to deep learning. Ultrasound Med Biol 49(3):677–698

    Google Scholar 

  49. Jentzer JC, Kashou AH, Murphree DH (2023) Clinical applications of artificial intelligence and machine learning in the modern cardiac intensive care unit. Intell-Based Med 7:100089

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pradeep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pradeep, D., Prasath, S.D., Edwin, J.J., Kumaravel, P. (2023). Fetal Cardiac Detection Using Deep Learning from Echocardiographic Image–A Survey. In: Choudrie, J., Mahalle, P.N., Perumal, T., Joshi, A. (eds) IOT with Smart Systems. ICTIS 2023. Lecture Notes in Networks and Systems, vol 720. Springer, Singapore. https://doi.org/10.1007/978-981-99-3761-5_6

Download citation

Publish with us

Policies and ethics