Skip to main content

Type-1 and Type-2 Fuzzy Techniques: Application to Robotic Systems

  • Chapter
  • First Online:
Advances in Robust Control and Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 474))

Abstract

Autonomous mobile robot navigation is a very important task in mobile robotic field. The navigation process is defined by the task to define the values of motion permitting the robot to displace from the start situation to the final destination without human actions and safely. If the mobile robot environment is free of obstacles, the problem is easy to handle. But as the environment is more complex, the robot control system needs more treatments, intelligence and capacities to handle the interactive uncertainties, imprecision that have affect each application of such robotic system. Behaviour-based navigation approaches are successful tools of subdivides the global navigation process into small systems in order to simplify the global task. These basic behaviours are: goal seeking, obstacle avoidance, wall-following, moving target pursuing, avoiding dynamic objects... Mobile robot navigation is one of the popular tasks encountered by imprecision and uncertainties and it has been studied using fuzzy logic systems. Controllers based on fuzzy theory have been applied and implemented in various types of engineering problems, especially in control and robotics. Type-1 fuzzy system is based on two-dimensional fuzzy membership functions. In some applications, this function cannot deal with the resulted uncertainty. Type-2 fuzzy membership function with their imprecise boundaries can give fuzzy sets with membership values instead of a crisp number. Type-1 fuzzy logic systems (T1FLSs) use precise and crisp type-1 fuzzy sets. The modelling process is based on the behaviour of the operator under specific conditions. However, this type of control system presents some limitations in treatment of uncertainties. Type-2 fuzzy logic systems (T2FLSs) introduce important tools to improve the robot performances. Type-2 fuzzy sets and their theoretical concepts create a new version of fuzzy logic controllers in robotic field. Type-2 fuzzy logic systems offer a good tool to model some levels of uncertainties which type-1 fuzzy logic system cannot do. The additional dimension of T2MF may give a better representation of uncertainty than T1MF. The T1FLS produces a T1FM and the result is a real value, whereas a Type-2 FLS produces a T2FM, and using the type-reducer, this fuzzy set will be converted to a T1FM. The type-reduced gives decision-making flexibilities. The objective of this chapter is to control a wheeled mobile robot using type-1 and type-2 Takagi-Sugeno (TS) fuzzy logic controllers. The proposed TS fuzzy controllers are used to infer actions for autonomous robot motion based-behaviors: goal seeking, obstacle avoidance, and wall-following. The simulation results are discussed and compared to show the effectiveness of the designed fuzzy logic controllers for automatic robot motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allawi, Z.T., Abdalla, T.Y.: A pso-optimized type-2 fuzzy logic controller for navigation of multiple mobile robots. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 33–39 (2014)

    Google Scholar 

  2. Astudillo, L., Castillo, O., Aguilar, L.T.: Intelligent control for a perturbed autonomous wheeled mobile robot: Type-2 fuzzy logic approach. NonlinearStudies 14(1) (2007)

    Google Scholar 

  3. Azar, A.T.: Overview of type-2 fuzzy logic systems. Int. J. Fuzzy Syst. Appl. (IJFSA) 2(4), 1–28 (2012)

    Google Scholar 

  4. Baklouti, N., John, R., Alimi, A.M., et al.: Interval type-2 fuzzy logic control of mobile robots. J. Intell. Learn. Syst. Appl. 4(04), 291 (2012)

    Google Scholar 

  5. Beyerer, J., Kühnert, C., Niggemann, O.: Machine Learning for Cyber Physical Systems: Selected Papers from the International Conference ML4CPS 2018. Springer Nature (2019)

    Google Scholar 

  6. Biglarbegian, M., Melek, W.W., Mendel, J.M.: Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: Theory and experiments. IEEE Trans. Ind. Electron. 58(4), 1371–1384 (2010)

    Article  Google Scholar 

  7. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  8. Castillo, O., Amador-Angulo, L., Castro, J.R., Garcia-Valdez, M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354, 257–274 (2016)

    Article  Google Scholar 

  9. Chaoui, H., Gueaieb, W.: Type-2 fuzzy logic control of a flexible-joint manipulator. J. Intell. Robot. Syst. 51(2), 159–186 (2008)

    Article  Google Scholar 

  10. Cherroun, L.: Type-2 fuzzy behavior based navigation method for mobile robot. J. Electr. Eng. 17(4), 428–434 (2017)

    Google Scholar 

  11. Cherroun, L., Boumehraz, M.: Fuzzy behavior based navigation approach for mobile robot in unknown environment. J. Electr. Eng. 13(4), 284–291 (2013)

    Google Scholar 

  12. Cherroun, L., Boumehraz, M., Kouzou, A.: Mobile robot path planning based on optimized fuzzy logic controllers. In: New Developments and Advances in Robot Control, pp. 255–283, Springer (2019a)

    Google Scholar 

  13. Cherroun, L., Nadour, M., Boudiaf, M., Kouzou, A.: Comparison between type-1 and type-2 takagi-sugeno fuzzy logic controllers for robot design. Electrotehnica Electron. Autom. 66(2) (2018)

    Google Scholar 

  14. Cherroun, L., Nadour, M., Kouzou, A.: Type-1 and type-2 fuzzy logic controllers for autonomous robotic motion. In: 2019 International Conference on Applied Automation and Industrial Diagnostics (ICAAID), vol. 1, pp. 1–5, IEEE (2019b)

    Google Scholar 

  15. Coupland, S., John, R.: Geometric type-1 and type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 15(1), 3–15 (2007)

    Article  MATH  Google Scholar 

  16. Cuesta, F., Ollero, A.: Intelligent Mobile Robot Navigation, vol. 16. Springer Science & Business Media (2005)

    Google Scholar 

  17. Fatmi, A., Yahmadi, A.A., Khriji, L., Masmoudi, N.: A fuzzy logic based navigation of a mobile robot. World academy of science. Eng. Technol. 22, 169–174 (2006)

    Google Scholar 

  18. Figueroa, J., Posada, J., Soriano, J., Melgarejo, M., Rojas, S.: A type-2 fuzzy controller for tracking mobile objects in the context of robotic soccer games. In: The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ’05, pp. 359–364, IEEE (2005)

    Google Scholar 

  19. Ge, S.S., Lewis, F.L.: Autonomous Mobile Robots: Sensing, Control. CRC Press, Decision Making and Applications (2006)

    MATH  Google Scholar 

  20. Hagras, H.: Type-2 flcs: A new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)

    Article  Google Scholar 

  21. Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)

    Article  Google Scholar 

  22. Jafelice, R.M., Bertone, A.M., Bassanezi, R.C.: A study on subjectivities of type 1 and 2 in parameters of differential equations. TEMA (São Carlos) 16, 51–60 (2015)

    Article  MathSciNet  Google Scholar 

  23. Juang, C.-F., Hsu, C.-H.: Reinforcement ant optimized fuzzy controller for mobile-robot wall-following control. IEEE Trans. Ind. Electron. 56(10), 3931–3940 (2009)

    Article  Google Scholar 

  24. Karnik, N.N., Mendel, J.M.: Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 122(2), 327–348 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)

    Article  Google Scholar 

  26. Liu, Z., Zhang, Y., Wang, Y.: A type-2 fuzzy switching control system for biped robots. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(6), 1202–1213 (2007)

    Google Scholar 

  27. Martínez-Soto, R., Castillo, O., Aguilar, L.T.: Type-1 and type-2 fuzzy logic controller design using a hybrid pso-ga optimization method. Inf. Sci. 285, 35–49 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Melgarejo, M., Pena-Reyes, C.A.: Implementing interval type-2 fuzzy processors [developmental tools]. IEEE Comput. Intell. Mag. 2(1), 63–71 (2007)

    Article  Google Scholar 

  29. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Article  Google Scholar 

  30. Nadour, M., Boumehraz, M., Cherroun, L., Puig, V.: Mobile robot visual navigation based on fuzzy logic and optical flow approaches. Int. J. Syst. Assur. Eng. Manage. 10(6), 1654–1667 (2019)

    Article  Google Scholar 

  31. Nadour, M., Boumehraz, M., Cherroun, L., Puig Cayuela, V.: Hybrid type-2 fuzzy logic obstacle avoidance system based on horn-schunck method. Electrotehnica Electron. Autom. 67(3), 45–51 (2019)

    Google Scholar 

  32. Passino, K.M., Yurkovich, S., Reinfrank, M.: Fuzzy Control, vol. 42. Citeseer (1998)

    Google Scholar 

  33. Seraji, H., Howard, A.: Behavior-based robot navigation on challenging terrain: A fuzzy logic approach. IEEE Trans. Robot. Autom. 18(3), 308–321 (2002)

    Article  Google Scholar 

  34. Tai, K., El-Sayed, A.-R., Biglarbegian, M., Gonzalez, C.I., Castillo, O., Mahmud, S.: Review of recent type-2 fuzzy controller applications. Algorithms 9(2), 39 (2016)

    Article  MathSciNet  Google Scholar 

  35. Ye, C., Yung, N.H., Wang, D.: A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 33(1), 17–27 (2003)

    Google Scholar 

  36. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-i. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhmissi Cherroun .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

  • Calculation steps of the Takagi-Sugeno Type-2 FLC output.

    For a first order type-2 TSKFLS with M rules, N inputs \(\left( x_{1} \in X_{1}, \ldots , x_{N} \in X_{N}\right) \) and one output (\(y \in Y\)). The r th rule can be expressed by:

    \({\text {IF}} x_{1}\) is \(\widetilde{F}_{1}^{r}\) and \(x_{2}\) is \(\widetilde{F}_{2}^{r}\) and...and \(x_{p}\) is \(\widetilde{F}_{i}^{r}\), THEN \(y^{r}=c_{0}^{r}+c_{1}^{r} x_{1}+\cdots +c_{p}^{r} x_{p}\)

    • The firing degree of the i th fuzzy rule is calculated y the following equations:

      \(W^{i}\left( x^{\prime }\right) =\left[ \underline{w}^{i}\left( x^{\prime }\right) , \bar{w}^{i}\left( x^{\prime }\right) \right] \)

      \(\underline{w}^{i}=\underline{\mu }_{\widehat{F}_{i}^{i}}\left( x_{1}\right) * \ldots * \underline{\mu }_{\widehat{F}_{p}^{i}}\left( x_{p}\right) \)

      \(\bar{w}^{i}=\bar{\mu }_{\widehat{F}_{i}^{i}}\left( x_{1}\right) * \ldots * \bar{\mu }_{\widehat{F}_{p}^{i}}\left( x_{p}\right) \)

    • The final output is calculated by:

      \(Y\left( Y^{1}, \ldots , Y^{M}, W^{1}, \ldots , W^{M}\right) =\left[ y_{l}, y_{r}\right] \)

      \(=\int _{y^{1}} \ldots \int _{y^{^{ }}} \int _{w^{U}} \ldots 1 / \frac{\sum _{i=1}^{M} w^{i} y^{i}}{\sum _{i=1}^{M} w^{i}}\)

      Where \(y_{i} \in Y^{i}\), and \(Y^{i}=\left[ y_{l}^{i}, y_{r}^{i}\right] ,(i=1 \ldots M), y_{l}\) and \(y_{r}\) are calculated as follows:

      \(y_{l}=\frac{\sum _{i=1}^{M} w_{l}^{i} y_{l}^{i}}{\sum _{i=1}^{M} w_{l}^{i}}, y_{r}=\frac{\sum _{i=1}^{M} w_{r}^{i} y_{r}^{i}}{\sum _{i=1}^{M} w_{r}^{i}}\)

    • The overall output is:

      \(y=\frac{y_{l}+y_{r}}{2}\)

Appendix 2

Table 6.

Table 6 Nomenclatures, symbols and abbreviations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cherroun, L., Nadour, M., Kouzou, A., Boumehraz, M. (2023). Type-1 and Type-2 Fuzzy Techniques: Application to Robotic Systems. In: Derbel, N., Nouri, A.S., Zhu, Q. (eds) Advances in Robust Control and Applications. Studies in Systems, Decision and Control, vol 474. Springer, Singapore. https://doi.org/10.1007/978-981-99-3463-8_14

Download citation

Publish with us

Policies and ethics