Skip to main content

A Review of Temporal Network Analysis and Applications

  • Conference paper
  • First Online:
3D Imaging—Multidimensional Signal Processing and Deep Learning

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 349))

Abstract

With the continuous development of network science, a single and static network structure has become more and more difficult to portray various complex systems, while the temporal network is becoming an effective tool to solve the above problem. At present, the research on the temporal network is still at the stage of primary, and there are still many worthy areas to be further explored. Inspired by this, in our paper, we review the modeling and representation of temporal networks, the structural characteristics and statistical properties of networks, and the application analysis; analyze the weaknesses of the current research; and look forward to the future development aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holme, P., Saramaki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  2. Blonder, B., Wey, T.W., Dornhaus, A., et al.: Temporal dynamics and network analysis. Methods Ecol. Evol. 3(6), 958–972 (2012)

    Article  Google Scholar 

  3. Barrat, A., Cattuto, C., Colizza, V., et al.: Empirical temporal networks of face-to-face human interactions. Eur. Phys. J. Spec. Top. 222(6), 1295–1309 (2013)

    Article  Google Scholar 

  4. Scholtes, I., Wider, N., Pfitzner, R., et al.: Causality-driven slow-down vs. speed-up of diffusion in non-Markovian temporal networks. Nat. Commun. 5, 5024 (2014)

    Google Scholar 

  5. Barabási, A.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005)

    Article  Google Scholar 

  6. Stehlé, J., Voirin, N., Barrat, A., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6(8), e23176 (2011)

    Article  Google Scholar 

  7. Casteigts, A., Flocchini, P., Quattrociocchi, et al.: Time-varying graphs and dynamic networks. Ad-Hoc, Mob., Wirel. Netw. 346–359 (2011)

    Google Scholar 

  8. Rosvall, M., Bergstrom, C.: Mapping change in large networks. PLoS ONE 5(1), e8694 (2010)

    Article  Google Scholar 

  9. Hyoungshick, K., Ross, A.: Temporal node centrality in complex networks. Phys. Rev. E 85(2), 26107 (2012)

    Google Scholar 

  10. Tang, J. K.: Temporal network metrics and their application to real world networks. Ph.D. Thesis, University of Cambridge (2012)

    Google Scholar 

  11. Tang, J. K., Musolesi, M., Mascolo, C., et al.: Temporal distance metrics for social network analysis. In: The 2nd ACM workshop on Online Social Networks. Barcelona, Spain. pp: 31–36 (2009)

    Google Scholar 

  12. Tang, J., Musolesi, M., Mascolo, C., et al.: Analyzing information flows and key mediators through temporal centrality metrics. In: The 3rd Workshop on Social Network Systems. Paris, France. pp: 1–6 (2010)

    Google Scholar 

  13. Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E 84(1), 16105 (2011)

    Article  Google Scholar 

  14. Valdano, E., Ferreri, L., Poletto, C., et al.: Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5(2), 021005 (2015)

    Google Scholar 

  15. Zhang, Y.Q., Li, X., Liang, D.: Characterizing bursts of aggregate pairs with individual Poissonian activity and preferential mobility. IEEE Commun. Lett. 19(7), 1225–1228 (2015)

    Article  Google Scholar 

  16. Gauvin, L., Panisson, A., Barrat, A., Cattuto, C.: Revealing latent factors of temporal networks for mesoscale intervention in epidemic spread. ArXiv preprint arXiv:1501.02758 (2015)

  17. Huang, Q. J.: Research on structure modeling and evolution analysis in temporal network. Ph.D. Thesis, National University of Defense and Technology (2019)

    Google Scholar 

  18. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  19. Mucha, P.J., Richardson, T., Macon, K., et al.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

    Article  MathSciNet  Google Scholar 

  20. Rocha, L.E., Blondel, V.D.: Flow motifs reveal limitations of the static framework to represent human interactions. Phys. Rev. E 87(4), 042814 (2013)

    Article  Google Scholar 

  21. Kovanen, L., Kaskia, K., Kertésza, J., et al.: Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc. Natl. Acad. Sci. U.S.A. 110(45), 18070–18075 (2013)

    Article  Google Scholar 

  22. Liu, K., Cheung, W. K., Liu, J.: Detecting stochastic temporal network motifs for human communication patterns analysis. In: The International Conference on Advances in Social Networks Analysis and Mining, Niagara, Ontario. pp. 533–540 (2013)

    Google Scholar 

  23. Bassett, D.S., Porter, M.A., Wymbs, N.F., et al.: Robust detection of dynamic community structure in networks. Chaos 23, 013142 (2013)

    Article  MathSciNet  Google Scholar 

  24. Fu, C., Li, M., Zou, D. Q., et al.: Community vitality in dynamic temporal networks. Int. J. Distrib. Sens. Netw. 281565 (2013)

    Google Scholar 

  25. Holme, P.: Network reachability of real-world contact sequences. Phys. Rev. E 71(4), 046119 (2005)

    Article  Google Scholar 

  26. Praprotnik, S., Batagelj, V.: Spectral centrality measures in temporal networks. Ars Mathematica Contemporanea 11(1), 11–33 (2015)

    Article  MathSciNet  Google Scholar 

  27. Taylor, D., Myers, S.A., Clauset, A., et al.: Eigenvector-based centrality measures for temporal networks. Multiscale Model. Simul. 15(1), 537–574 (2017)

    Article  MathSciNet  Google Scholar 

  28. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 1–41 (2007)

    Article  Google Scholar 

  29. Huang, Z., Lin, D.K.J.: The time-series link prediction problem with applications in communication surveillance. INFORMS J. Comput. 21(2), 286–303 (2009)

    Article  Google Scholar 

  30. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data 5(2), 1–27 (2011)

    Article  Google Scholar 

  31. Soares, P. R., Prudêncio, R.:Time series based link prediction. In: The International Joint Conference on Neural Networks, Brisbane, QLD, Australia. pp: 1–7 (2012)

    Google Scholar 

  32. Gauvin, L., Panisson, A., Cattuto, C.: Detecting the community structure and activity patterns of temporal networks: A non-negative tensor factorization approach. PLoS ONE 9(1), e86028 (2014)

    Article  Google Scholar 

  33. Peixoto, T.P., Rosvall, M.: Modeling sequences and temporal networks with dynamic community structures. Nat. Commun. 8(582), 1–12 (2017)

    Google Scholar 

  34. Matias, C., Miele, V.: Statistical clustering of temporal networks through a dynamic stochastic block model. J. R. Stat. Soc. Ser. B-Stat. Methodol. 79(4), 1119–1141 (2017)

    Article  MathSciNet  Google Scholar 

  35. Palla, G., Barabási, A., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)

    Article  Google Scholar 

  36. Cazabe, R., Amblard, F.: Dynamic community detection. Springer (2014)

    Google Scholar 

  37. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: A survey. ArXiv:1707.03186v3 (2020).

    Google Scholar 

  38. Aynaud, T., Fleury, E., Guillaume, J.L., et al.: Communities in evolving networks: definitions, detection, and analysis techniques. Dyn. Complex Netw. 2, 159–200 (2013)

    MathSciNet  Google Scholar 

  39. Aynaud T., Guillaume, J. L.: Static community detection algorithms for evolving networks. In: International Symposium on modeling and optimization in mobile, ad-hoc and wireless networks, pp. 513–519 (2010)

    Google Scholar 

  40. Guo, C.H., Wang, J.J., Zhang, Z.: Evolutionary community structure discovery in dynamic weighted networks. Physica A 413, 565–576 (2014)

    Article  Google Scholar 

  41. Liu, F.C., Choi, D., Lu Xie, L., Roeder, K.: Global spectral clustering in dynamic networks. Proc. Natl. Acad. Sci. U.S.A. 115(5), 927–932 (2018)

    Article  MathSciNet  Google Scholar 

  42. Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theor. Comput. Sci., 245–252 (2016)

    Google Scholar 

  43. Kim, D., Hyun, D., Oh, J., et al.: Influence maximization based on reachability sketches in dynamic graphs. Inf. Sci. 394–395, 217–231 (2017)

    Article  Google Scholar 

  44. Wang, Y.H., Fan, Q., Li, Y.C., et al.: Real-time influence maximization on dynamic social streams, pp. 805–816. Proceedings of the VLDB Endow. Munich, Germany (2017)

    Google Scholar 

  45. Wu, A.B., Yuan, Y., Qiao, B.Y., et al.: The influence maximization problem based on large-scale temporal graph. Chin. J. Comput. 42(12), 2647–2664 (2019)

    Google Scholar 

  46. Thompson, W. H., Granitz, Harlalka, V. et al.: Wiheto/teneto: 0.5.0 (2020). https://github.com/wiheto/teneto/tree/0.5.0

  47. Thompson, W.H., Brantefors, P., Fransson, P.: From static to temporal network theory: Applications to functional brain connectivity. Network Neuroscience 1(2), 69–99 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to convey their appreciation for the financial support given by the National Natural Science Foundation and the Project with the National University of Defense and Technology. The authors also agree there has been no conflict of interest in the process of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, J., Xiao, B., Cui, Y. (2023). A Review of Temporal Network Analysis and Applications. In: Patnaik, S., Kountchev, R., Tai, Y., Kountcheva, R. (eds) 3D Imaging—Multidimensional Signal Processing and Deep Learning. Smart Innovation, Systems and Technologies, vol 349. Springer, Singapore. https://doi.org/10.1007/978-981-99-1230-8_1

Download citation

Publish with us

Policies and ethics