Skip to main content

Vision-Based Global Positioning System Using Improved GMS Algorithm for a UAV

  • Conference paper
  • First Online:
Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022) (ICAUS 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1010))

Included in the following conference series:

  • 75 Accesses

Abstract

Fast and accurate localization for unmanned aerial vehicle (UAV) navigation could avoid hazards when GPS is unavailable. A vision-based global positioning system is developed for UAV by means of satellite images from Google Map as reference. In this system, an ultra-robust and fast feature correspondence algorithm, called Grid-based motion statistics (GMS), is utilized for scene matching. GMS’s performance is comparable to the techniques many orders of magnitude slower, and it maintains high speed as the fast algorithms. A Least Median Square improved GMS algorithm (LMedS-GMS) is developed which is employed to solve the matching failure of the original GMS in challenging scenarios. Moreover, a robust filtering localization approach combining the random sample consensus algorithm (RANSAC) and the proposed LMedS-GMS is designed for locating the position of an UAV. Finally, a vision-based global positioning architecture is proposed using this method with the altitude and direction information from the airborne sensors. Experimental results based on offline data demonstrate that the proposed algorithm is superior to state-of-the-art methods in the accuracy and real-time performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cesetti, A., Frontoni, E., Mancini, A., et al.: A vision-based guidance system for UAV navigation and safe landing using natural landmarks. J. Intell. Rob. Syst. 57(1–4), 233–257 (2010)

    Article  MATH  Google Scholar 

  2. Conte, G., Doherty, P.: Vision-based unmanned aerial vehicle navigation using geo-referenced information. In: 2008 IEEE Aerospace Conference, pp. 1–18 (2009)

    Google Scholar 

  3. Amidi, O., Kanade, T., Fujita, K.: A visual odometer for autonomous helicopter flight. Robot. Auton. Syst. 28(2–3), 185–193 (1999)

    Article  Google Scholar 

  4. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. J. Field Robot. 23(1), 3–20 (2006)

    Article  MATH  Google Scholar 

  5. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  6. Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. J. Field Robot. 28(6), 854–874 (2011)

    Article  Google Scholar 

  7. Caballero, F., Merino, L., Ferruz, J., et al.: A visual odometer without 3D reconstruction for aerial vehicles. Applications to building inspection. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4673–4678 (2006)

    Google Scholar 

  8. Caballero, F., Merino, L., Ferruz, J., et al.: Vision-based odometry and SLAM for medium and high altitude flying UAVs. J. Intell. Rob. Syst. 54(1–3), 137–161 (2009)

    Article  Google Scholar 

  9. Conte, G., Doherty, P.: A visual navigation system for uas based on geo-referenced imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38(1), 101–106 (2011)

    Google Scholar 

  10. Cesetti, A., Frontoni, E., Mancini, A., et al.: A visual global positioning system for unmanned aerial vehicles used in photogrammetric applications. J. Intell. Rob. Syst. 61(1–4), 157–168 (2011)

    Article  Google Scholar 

  11. Ascani, A., Frontoni, E., Mancini, A., et al.: Feature group matching for appearance-based localization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3933–3938 (2008)

    Google Scholar 

  12. Shan, M., Wang, F., Lin, F., et al.: Google map aided visual navigation for UAVs in GPS-denied environment. In: IEEE International Conference on Robotics and Biomimetics, pp. 114–119 (2017)

    Google Scholar 

  13. Lindsten, F., Callmer, J., Ohlsson, H., et al.: Geo-referencing for UAV navigation using environmental classification. In: IEEE International Conference on Robotics and Automation, pp. 1420–1425 (2010)

    Google Scholar 

  14. Majdik, A.L., Albers-Schoenberg, Y., Scaramuzza, D.: MAV urban localization from google street view data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3979–3986 (2013)

    Google Scholar 

  15. Seema, B.S., Hemanth, K., Naidu, V.P.S.: Geo-registration of aerial images using RANSAC algorithm. In: NCTAESD 2014, Vemana Institute of Technology, Bangalore, pp. 1–5 (2014)

    Google Scholar 

  16. Saranya, K.C., Naidu, V.P.S., Singhal, V., et al.: Application of vision based techniques for UAV position estimation. In: 2016 International Conference on Research Advances in Integrated Navigation Systems (RAINS), pp. 1–5 (2016)

    Google Scholar 

  17. Mantelli, M., Pittol, D., Neuland, R., et al.: A novel measurement model based on abBRIEF for global localization of a UAV over satellite images. Robot. Auton. Syst. 112(1), 304–319 (2019)

    Article  Google Scholar 

  18. Bian, J.W., Lin, W.Y., Matsushita, Y., et al.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2828–2837 (2017)

    Google Scholar 

  19. Lin, W.-Y., Cheng, M.-M., Lu, J., Yang, H., Do, M.N., Torr, P.: Bilateral functions for global motion modeling. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 341–356. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_23

    Chapter  Google Scholar 

  20. Lipman, Y., Yagev, S., Poranne, R., et al.: Feature matching with bounded distortion. ACM Trans. Graph. 33(3), 1–14 (2014)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Beijing HIWING Sci. and Tech. Info Inst

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xin, L., He, X., Cui, X., Liu, Z. (2023). Vision-Based Global Positioning System Using Improved GMS Algorithm for a UAV. In: Fu, W., Gu, M., Niu, Y. (eds) Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022). ICAUS 2022. Lecture Notes in Electrical Engineering, vol 1010. Springer, Singapore. https://doi.org/10.1007/978-981-99-0479-2_89

Download citation

Publish with us

Policies and ethics