Skip to main content

A Survey of Distributed Architectures and Path Optimization Methods Applied to Clusters of Agents

  • Conference paper
  • First Online:
Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022) (ICAUS 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1010))

Included in the following conference series:

  • 65 Accesses

Abstract

In recent years, agent clusters have become a research hotspot in the field of multi-agent technology, and can be widely used in post-disaster survivor search and rescue, environmental pollution source tracking and monitoring, park logistics and dispatching and other fields. As an important supporting technology for cluster collaboration, cluster path optimization technology restricts the performance of cluster. This paper summarizes three typical cluster optimization structures, including redundant optimization structure, distributed optimization structure, and hierarchical optimization structure, by analyzing the characteristics of clusters without center, distribution, and self-organization. The work of this paper provides a useful reference for the research of cluster path optimization technology in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wei, L.: Stability Analysis of Swarms With General Topology. IEEE Trans. Syst. Man Cybern. Part B 38(4), 1084–1097 (2008)

    Article  Google Scholar 

  2. Smith, A.E.: Swarm Intelligence: From Natural to Artificial Systems [Book Reviews]. IEEE Press (2000)

    Google Scholar 

  3. Karaboga, D., et al.: OptimAlgorithm – artificial bee colony (ABC) algorithm and applications (2014)

    Google Scholar 

  4. Vaniya, S., Solanki, B., Gupte, S.: Multi Robot Path Planning Algorithms: A Survey (2016)

    Google Scholar 

  5. Tsourdos, A., White, B., Shanmugavel, M.: Cooperative Path Planning of Unmanned Aerial Vehicles. Wiley (2010)

    Google Scholar 

  6. Ying, T.: A Survey on Swarm Robotics (2016)

    Google Scholar 

  7. Miao, G., Qian, M.A.: A survey of developments on coordinated control of multi-agent systems. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Edn.) (2013)

    Google Scholar 

  8. White, B.: Cooperative path planning of unmanned aerial vehicles. J. Guid. Control. Dyn. 34(5), 1601–1602 (2010)

    Google Scholar 

  9. Zhang, Y.Z., et al.: Cooperative path planning for multi-UAVs based on improved ACO algorithm. Fire Control Command Control (2017)

    Google Scholar 

  10. Brock, O., Kavraki, L.E.: Decomposition-based motion planning: a framework for real-time motion planning in high-dimensional configuration spaces. In: IEEE International Conference on Robotics & Automation IEEE (2003)

    Google Scholar 

  11. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelligence. Swarm Intell. 1(1), 3–31 (2007)

    Article  Google Scholar 

  12. Wang, F.L., Deng, H., Gao, Y., Lei, J. (eds.): AICI 2010. LNCS (LNAI), vol. 6320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16527-6

    Book  Google Scholar 

  13. An ant colony optimization approach for the preference-based shortest path search J. Chin. Instit. Eng. 34(2), 181–196 (2011)

    Google Scholar 

  14. Peng, J., et al.: Robot global path planning based on improved artificial fish-swarm algorithm. Res. J. Appl. Sci. Eng. Technol. 5(9), 2042–2047 (2013)

    Article  Google Scholar 

  15. Zhang, Y., Hua, Y.: Path planning of mobile robot based on hybrid improved artificial fish swarm algorithm. Vibroeng. Proc. 17(5) (2018)

    Google Scholar 

  16. Hao, et al.: Heterogeneous pigeon-inspired optimization. Sci. China (Inf. Sci.) 62(7), 64–72 (2019)

    Google Scholar 

  17. Li, J., Wei, X., Li, B., Zeng, Z.: A survey on firefly algorithms. Neurocomputing 500, 662–678 (2022)

    Google Scholar 

  18. Sheng-Dong, Y.U., Hong-Tao, W.U., Jin-Yu, M.A.: Path planning for unmanned air vehicle based on chaotic glowworm swarm optimization. Mach. Des. Manuf. (2018)

    Google Scholar 

  19. Pan, X., Xue, L., Li, R.: A new and efficient firefly algorithm for numerical optimization problems. Neural Comput. Appl. 31(5), 1445–1453 (2018). https://doi.org/10.1007/s00521-018-3449-6

    Article  Google Scholar 

  20. Duan, P., et al.: A developed firefly algorithm for multi-objective path planning optimization problem. In: 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), IEEE (2018)

    Google Scholar 

  21. Patle, B.K., et al.: Path planning in uncertain environment by using firefly algorithm. Defence Technol. 14(6), 691–701 (2018)

    Google Scholar 

  22. Lahouar, S., Zeghloul, S., Romdhane, L.: Real-time path planning for multi-DoF manipulators in dynamic environment. Int. J. Adv. Robotic Syst. 3(2) (2008)

    Google Scholar 

  23. Uzol, O., Yavrucuk, I., Uzol, N.S.: Collaborative target tracking for swarming MAVs using potential fields and panel methods. In: AIAA Guidance, Navigation & Control Conference & Exhibit (2013)

    Google Scholar 

  24. Lee, K., Choi, D., Kim, D.: Potential fields-aided motion planning for quadcopters in three-dimensional dynamic environments. In: AIAA Scitech 2021 Forum (2021)

    Google Scholar 

  25. Kim, S., et al.: New potential functions for multi robot path planning : SWARM or SPREAD. In: International Conference on Computer & Automation Engineering, IEEE (2010)

    Google Scholar 

  26. Lin, Y., Saripalli, S.: Path planning using 3D dubins curve for unmanned aerial vehicles. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE (2014)

    Google Scholar 

  27. Choi, J.W., Curry, R., Elkai, G.: Path planning based on Bézier curve for autonomous ground vehicles. In: World Congress on Engineering and Computer Science 2008, WCECS ‘08. Advances in Electrical and Electronics Engineering – IAENG Special Edition of the IEEE (2009)

    Google Scholar 

  28. Farouki, R.T.: Pythagorean Hodographs in ℝ3. Springer, Berlin Heidelberg (2008)

    Book  Google Scholar 

  29. Shanmugavel, M., et al.: 3D path planning for multiple UAVs using pythagorean hodograph curves. In: AIAA Guidance, Navigation & Control Conference & Exhibit (2007)

    Google Scholar 

  30. Wallar A, Plaku E. Path planning for swarms in dynamic environments by combining probabilistic roadmaps and potential fields[C]// Swarm Intelligence. IEEE, 2015:1–8

    Google Scholar 

  31. Azpurua, H., et al.: Multi-robot coverage path planning using hexagonal segmentation for geophysical surveys. Robotica 36(8), 1–23 (2018)

    Google Scholar 

  32. Madridano, A., et al.: Multi-Path Planning Method for UAVs Swarm Purposes. In: IEEE International Conference on Vehicular Electronics and Safety (ICVES), IEEE (2019)

    Google Scholar 

  33. Li, H., et al.: Path planning and aggregation for a microrobot swarm in vascular networks using a global input. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE (2017)

    Google Scholar 

  34. Roberge, et al.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. In: IEEE Transactions on Industrial Informatics (2013)

    Google Scholar 

  35. Qamar, S., et al.: Autonomous drone swarm navigation and multi-target tracking in 3D environments with dynamic obstacles (2022)

    Google Scholar 

  36. Sigaud, O., Peters, J., Seel, N.M.: Robot Learning. Encyclo. Sci. Learn. 16(3), 2869–2871 (2012)

    Article  Google Scholar 

  37. Ćurković, P., Jerbić, B., Stipančić, T.: Swarm based approach to path planning using Honey Bees Mating Algorithm and ART neural architecture. Hrvatska znanstvena bibliografija i MZOS-Svibor (2008)

    Google Scholar 

  38. Lin, C.C., Hsiao, P.Y., Chen, K.C.: A motion planning of swarm robots using genetic algorithm. In: International Conference on Broadband, IEEE (2010)

    Google Scholar 

  39. Puente-Castro, A., et al.: UAV swarm path planning with reinforcement learning for field prospecting. In: Applied Intelligence. Springer (2022)

    Google Scholar 

  40. Rasouli, A.: Swarm of interacting reinforcement learners: concurrency and implementation. In: International Joint Conference on Autonomous Agents & Multiagent Systems. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Beijing HIWING Sci. and Tech. Info Inst

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Yin, D., Yu, H. (2023). A Survey of Distributed Architectures and Path Optimization Methods Applied to Clusters of Agents. In: Fu, W., Gu, M., Niu, Y. (eds) Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022). ICAUS 2022. Lecture Notes in Electrical Engineering, vol 1010. Springer, Singapore. https://doi.org/10.1007/978-981-99-0479-2_296

Download citation

Publish with us

Policies and ethics