Skip to main content

Turbulence in Multiphase Flows

Fundamental Modeling Aspects

  • Living reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology
  • 653 Accesses

Abstract

An overview of the fundamental modeling aspects related to disperse multiphase flow is provided. For clarity and accessibility, the discussion is limited to two-phase flows where one phase is disperse (e.g., solid particles) and the other phase is continuous (i.e., a fluid). Because the ultimate goal is to understand the fundamental modeling aspects related to multiphase turbulent flows, a disperse phase with constant-in-time and uniform-in-space particle properties (e.g., size, density, chemical composition, temperature) is assumed. Likewise, the continuous-phase properties (i.e., density, viscosity) are assumed to be constant and uniform. With these assumptions, a disperse multiphase flow can be described mathematically by (i) the positions and velocities of the particles in the disperse phase and (ii) the continuity and momentum equations for the continuous phase. A further distinction is made between the microscale description where the interface coupling between the phases is treated explicitly, and the mesoscale description where the interphase coupling is modeled. These different levels of description capture different turbulent length scales, and, hence, the multiscale nature of multiphase turbulence is discussed (i.e., particle-scale or “pseudo-turbulence” and macroscale turbulence). In cases where an adequate separation of scales exists between the particle scale and the macroscale turbulent integral length scale, it is possible to derive fundamental turbulence models from the mesoscale description of a disperse multiphase flow. For clarity, the two simplest types of turbulence models are described: Reynolds-averaged transport equations and probability density function methods, focusing on the novel unclosed terms that arise due to interphase coupling. Finally, examples of gravity-driven, particle-laden flows in bounded and unbounded domains are used to illustrate the various turbulence regimes observed in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • K. Agrawal, P.N. Loezos, M. Syamlal, S. Sundaresan, The role of mesoscale structures in rapid gas-solid flows. J. Fluid Mech. 445, 151–186 (2001)

    Article  MATH  Google Scholar 

  • S. Balachandar, J.K. Eaton, Turbulent dispersed multiphase flows. Annu. Rev. Fluid Mech. 42, 111–133 (2010)

    Article  MATH  Google Scholar 

  • A. Benavides, B. van Wachem, Numerical simulation and validation of dilute turbulent gas–particle flow with inelastic collisions and turbulence modulation. Powder Technol. 182, 294–306 (2008)

    Article  Google Scholar 

  • P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collisional processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–524 (1954)

    Article  MATH  Google Scholar 

  • J. Capecelatro, O. Desjardins, An Euler-Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 1–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Capecelatro, O. Desjardins, R.O. Fox, Numerical study of collisional particle dynamics in cluster-induced turbulence. J. Fluid Mech. 747(R2), 1–13 (2014)

    MathSciNet  Google Scholar 

  • J. Capecelatro, O. Desjardins, R.O. Fox, On fluid-particle dynamics in fully-developed cluster-induced turbulence. J. Fluid Mech. 780, 578–635 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • G.T. Csanady, Turbulent diffusion of heavy particles in the atmosphere. J. Atmos. Sci. 20, 201–208 (1963)

    Article  Google Scholar 

  • O. Desjardins, R.O. Fox, P. Villedieu, A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys. 227, 2514–2539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Février, O. Simonin. Statistical and continuum modelling of turbulent reactive particulate flows. Part II: Application of a two-phase second-moment transport model for prediction of turbulent gas-particle flows, in Lecture series 2000–06, Von Karman Institute for Fluid Dynamics, 2000.

    Google Scholar 

  • P. Février, O. Simonin, K.D. Squires, Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: Theoretical formalism and numerical study. J. Fluid Mech. 533, 1–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • R.O. Fox, Computational Models for Turbulent Reacting Flows (Cambridge University Press, Cambridge, UK, 2003)

    Book  Google Scholar 

  • R.O. Fox, A quadrature-based third-order moment method for dilute gas-particle flows. J. Comput. Phys. 227, 6313–6350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • R.O. Fox, Higher-order quadrature-based moment methods for kinetic equations. J. Comput. Phys. 228, 7771–7791 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • R.O. Fox, Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44, 47–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • R.O. Fox, On multiphase turbulence models for collisional fluid-particle flows. J. Fluid Mech. 742, 368–424 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • R.O. Fox, P. Vedula, Quadrature-based moment model for moderately dense polydisperse gas-particle flows. Ind. Eng. Chem. Res. 49, 5174–5187 (2010)

    Article  Google Scholar 

  • X. Gao, L.-J. Wang, C. Wu, Y.-W. Cheng, X. Li, Steady-state simulation of core–annulus flow in a circulating fluidized bed (CFB) riser. Chem. Eng. Sci. 78, 98–110 (2012)

    Article  Google Scholar 

  • V. Garzó, S. Tenneti, S. Subramaniam, C.M. Hrenya, Enskog kinetic theory of monodisperse gas-solid flows. J. Fluid Mech. 712, 129–168 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Icardi, P. Asinari, D.L. Marchisio, S. Izquierdo, R.O. Fox, Quadrature-based moment closures for non-equilibrium flows: Hard-sphere collisions and approach to equilibrium. J. Comput. Phys. 231, 7431–7449 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • R.H.A. IJzermans, E. Meneguz, M.W. Reeks, Segregation of particles in incompressible random flows: Singularities, intermittency and random uncorrelated motion. J. Fluid Mech. 653, 99–136 (2010)

    Article  MATH  Google Scholar 

  • J.T. Jenkins, S.B. Savage, A theory for the rapid flow of identical, smooth, nearly elastic spherical particles. J. Fluid Mech. 130, 187–202 (1983)

    Article  MATH  Google Scholar 

  • P.C. Johnson, R. Jackson, Frictional–collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987)

    Article  Google Scholar 

  • D.L. Marchisio, R.O. Fox, Computational Models for Polydisperse Particulate and Multiphase Systems (Cambridge University Press, Cambridge, UK, 2013)

    Book  Google Scholar 

  • E. Masi, O. Simonin, E. Riber, P. Sierra, L.Y.M. Gicquel, Development of an algebraic-closure-based moment method for unsteady Eulerian simulations of particle-laden turbulent flows in very dilute regime. Int. J. Multiphase Flow 58, 257–278 (2014)

    Article  MathSciNet  Google Scholar 

  • M.R. Maxey, J.J. Riley, Equation of motion for a small rigid sphere in nonuniform flow. Phys. Fluids 26, 883–889 (1983)

    Article  MATH  Google Scholar 

  • J.-P. Minier, E. Peirano, The PDF approach to turbulent polydispersed two-phase flows. Phys. Rep. 352, 1–214 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • J.-P. Minier, E. Peirano, S. Chibbaro, PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow. Phys. Fluids 16, 2419 (2004)

    Article  MATH  Google Scholar 

  • A. Passalacqua, R.O. Fox, Advanced continuum modeling of gas-particle flows beyond the hydrodynamic limit. Appl. Math. Model. 35, 1616–1627 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Passalacqua, R.O. Fox, Simulation of mono- and bidisperse gas-particle flow in a riser with a third-order quadrature-based moment method. Ind. Eng. Chem. Res. 52, 187–198 (2013)

    Google Scholar 

  • A. Passalacqua, R.O. Fox, R. Garg, S. Subramaniam, A fully coupled quadrature-based moment method for dilute to moderately dilute fluid-particle flows. Chem. Eng. Sci. 65, 2267–2283 (2010)

    Article  Google Scholar 

  • A. Passalacqua, J.E. Galvin, P. Vedula, C.M. Hrenya, R.O. Fox, A quadrature-based kinetic model for dilute non-isothermal granular flows. Commun. Comput. Phys. 10, 216–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, UK, 2000)

    Book  MATH  Google Scholar 

  • M.W. Reeks, On the kinetic equation for the transport of particles in turbulent flow. Phys. Fluids A 3, 446–456 (1991)

    Article  MATH  Google Scholar 

  • M.W. Reeks, On the continuum equations for dispersed particles in nonuniform flows. Phys. Fluids A 4, 1290–1303 (1992)

    Article  MATH  Google Scholar 

  • O. Simonin. Statistical and continuum modelling of turbulent reactive particulate flows. Part I: Theoretical derivation of dispersed phase Eulerian modelling from probability density function kinetic equation, in Lecture Series 2000–06, Von Karman Institute for Fluid Dynamics, 2000.

    Google Scholar 

  • O. Simonin, P. Février, P. Laviévilla, On the spatial distribution of heavy particle velocities in turbulent flow: From continuous field to particulate chaos. J. Turbul. 3, N40 (2002)

    Article  MathSciNet  Google Scholar 

  • K.D. Squires, J.K. Eaton, Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169 (1991)

    Article  Google Scholar 

  • C. M. Tchen. Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Ph.D. thesis, University of Delft, The Hague, 1947.

    Google Scholar 

  • S. Tenneti, S. Subramaniam, Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46, 199–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Tenneti, R. Garg, C.M. Hrenya, R.O. Fox, S. Subramaniam, Direct numerical simulation of gas-solid suspensions at moderate Reynolds number: Quantifying the coupling between hydrodynamic forces and particle velocity fluctuations. Powder Technol. 203, 57–69 (2010)

    Article  Google Scholar 

  • M. Uhlmann, T. Doychev, Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: The effect of clustering upon the particle motion. J. Fluid Mech. 752, 310–348 (2014)

    Article  Google Scholar 

  • M.W. Vance, K.D. Squires, O. Simonin, Properties of the particle velocity field in gas-solid turbulent channel flow. Phys. Fluids 18, 063302 (2006)

    Article  Google Scholar 

  • V. Vikas, Z.J. Wang, A. Passalacqua, R.O. Fox, Realizable high-order finite-volume schemes for quadrature-based moment methods. J. Comput. Phys. 230, 5328–5352 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Vikas, C. Yuan, Z.J. Wang, R.O. Fox, Modeling of bubble-column flows with quadrature-based moment methods. Chem. Eng. Sci. 66, 3058–3070 (2011b)

    Article  Google Scholar 

  • Y. Xu, S. Subramaniam, Consistent modeling of interphase turbulent kinetic energy transfer in particle-laden turbulent flows. Phys. Fluids 19, 085101 (2007)

    Article  MATH  Google Scholar 

  • C. Yuan, R.O. Fox, Conditional quadrature method of moments for kinetic equations. J. Comput. Phys. 230, 8216–8246 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • C. Yuan, F. Laurent, R.O. Fox, An extended quadrature method of moments for population balance equations. J. Aerosol Sci. 51, 1–23 (2012)

    Article  Google Scholar 

  • L.I. Zaichik, V.M. Alipchenkov, E.G. Sinaiski, Particles in Turbulent Flows (Wiley-VCH, Berlin, 2008)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney O. Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Fox, R.O. (2016). Turbulence in Multiphase Flows. In: Yeoh, G. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-86-6_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-86-6_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-86-6

  • Online ISBN: 978-981-4585-86-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics