Skip to main content

Cavitation Flow of Cryogenic Fluids

  • Living reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology
  • 429 Accesses

Abstract

Cryogenic cavitation is important for the operation of rocket propulsion system and is complex because of its strong thermal effects. In this chapter, a brief introduction of this phenomenon is given out. Theoretical models historically developed to estimate thermal effects are classified by their physical hypothesis and deduced according to their proposers. The summary of the past experimental studies helps to provide the appearance, thermodynamic state and features of cryogenic cavitation over different geometries. Besides, a robust numerical framework for cryogenic cavitation modeling is built in details. Vorticity transport analysis further reveals the mechanism for unique partially shedding mode appeared in cryogenic cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • A.J. Acosta, A. Hollander, Remarks on Cavitation in Turbomachines, Hydromechanics Laboratory, California Institute of Technology, Report 79.3, Oct 1959, 1–48

    Google Scholar 

  • V. Ahuja, A. Hosangadi, S. Arunajatesan, Simulations of cavitating flows using hybrid unstructured meshes. J. Fluids Eng. 123, 331–340 (2001)

    Article  Google Scholar 

  • S. Barre, J. Rolland, G. Boitel, E. Goncalves, R.F. Patella, Experiments and modeling of cavitating flows in venturi: attached sheet cavitation. Eur. J. Mech. B Fluids 28, 444–464 (2009)

    Article  MATH  Google Scholar 

  • G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, New York, 1967)

    MATH  Google Scholar 

  • R.E. Bensow, G. Bark, Implicit LES predictions of the cavitating flow on a propeller. J. Fluids Eng. 132, 041302 (2010)

    Article  Google Scholar 

  • C.E. Brennen, The dynamic behavior and compliance of a stream of cavitating bubbles. J. Fluids Eng. 95, 533–541 (1973)

    Article  Google Scholar 

  • C.E. Brennen, Cavitation and bubble dynamics. New York : Oxford University Press; 1995.

    Google Scholar 

  • E.A. Brun, L.A. Martinot, J. Mathieu, MeÂcanique des Fluides 3 (Dunod, Paris, 1970)

    Google Scholar 

  • Cao Z.L., CFD modeling and experimental study of cavitation in cryogenic liquids (In Chinese), (2011)

    Google Scholar 

  • X. Cao, X. Zhang, L. Qiu, Z. Gan, Validation of full cavitation model in cryogenic fluids. Chin. Sci. Bull. 54, 1633–1640 (2009)

    Google Scholar 

  • V.P. Carey, Liquid-Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment (Hemisphere Publishing Corporation, Washington, DC, 1992)

    Google Scholar 

  • Cavitation models, Theory guide, ANSYS FLUENT 14.5 Documentation, 2012

    Google Scholar 

  • A. Cervone, C. Bramanti, E. Rapposelli, et al., Thermal cavitation experiments on a NACA 0015 hydrofoil. ASME J. Fluids Eng. 128, 326–331 (2006)

    Article  Google Scholar 

  • S. Clerc, Numerical simulation of the homogeneous equilibrium model for two-phase flows. J. Comput. Phys. 161, 354–375 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • O. Coutier-Delgosha, R. Fortes-Patella, J.L. Reboud, et al., Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition. J. Fluids Eng. 125, 970–978 (2003)

    Article  Google Scholar 

  • O.C. Delgosha, J.L. Reboud, Y. Delannoy, Numerical simulation of the unsteady behaviour of cavitating flows. Int. J. Numer. Methods Fluids 42, 527–548 (2003)

    MATH  Google Scholar 

  • M. Deshpande, J. Feng, C.L. Merkle, Numerical modeling of the thermodynamic effects of cavitation. J. Fluids Eng. 119, 420–427 (1997)

    Article  Google Scholar 

  • E.R.G. Eckert, R.M. Drake, Analysis of Heat and Mass Transfer (McGraw-Hill Book Co, New York, 1972)

    MATH  Google Scholar 

  • P. Eisenberg, H.L. Pond, Water Tunnel Investigations of Steady State Cavities, Rept. No. 668, David W. Taylor Model Basin, Oct 1948

    Google Scholar 

  • R.C. Fisher, Discussion of “A survey of modern centrifugal pump practice for oilfield and oil refining services”, by N. Tetlou. Proc. Inst. Mech. Eng. 152, 305–306 (1945)

    Google Scholar 

  • J.P. Franc, M. Michel, Attached cavitation and the boundary layer: experimental investigation and numerical treatment. J. Fluid Mech. 154, 63–90 (1985)

    Article  Google Scholar 

  • J.P. Franc, J.M. Michel, Fundamentals of Cavitation (Kluwer, Dordrecht, 2005)

    MATH  Google Scholar 

  • J.P. Franc, C. Pellone, Analysis of thermal effects in a cavitating inducer using rayleigh equation. ASME J. Fluids Eng. 129, 974–983 (2007)

    Article  Google Scholar 

  • J.P. Franc, C. Rebattet, A. Coulon, An experimental investigation of thermal effects in a cavitating inducer. Fifth International Symposium on Cavitation, Osaka, 2003

    Google Scholar 

  • J.P. Franc, G. Boitel, M. Riondet, et al., Thermodynamic effect on a cavitating inducer-part I: geometrical similarity of leading edge cavities and cavitation instabilities. ASME J. Fluids Eng. 132, 021303-1–021303-8 (2010a)

    Google Scholar 

  • J.P. Franc, G. Boitel, M. Riondet, et al., Thermodynamic effect on a cavitating inducer-part II: on-board measurements of temperature depression within leading edge cavities. ASME J. Fluids Eng. 132, 021304-1–021304-9 (2010b)

    Google Scholar 

  • D.H. Fruman, I. Benmansour, R. Sery, Estimation of the thermal effects on cavitation of cryogenic liquids. Cavitation Multiphase Flow Forum ASME FED 109, 93–96 (1991)

    Google Scholar 

  • S. Gavrilyuk, R. Saurel, Mathematical and numerical modeling of two-phase compressible flows. J. Comput. Phys. 175, 326–360 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • T.F. Gelder, R.S. Ruggeri, R.D. Moore, Cavitation similarity considerations based on measured pressure and temperature depressions in cavitated regions of freon 114, NASA TN D-3509, 1966

    Google Scholar 

  • M.G.D. Giorgi, D. Bello, A. Ficarella, Analysis of thermal effects in a cavitating orifice using Rayleigh equation and experiments. J. Eng. Gas Turbines Power 132, 092901 (2010)

    Article  Google Scholar 

  • E. Goncalvès, Modeling for non isothermal cavitation using 4-equation models. Int. J. Heat Mass Transf. 76, 247–262 (2014)

    Article  Google Scholar 

  • E. Goncalvès, R.F. Patella, Numerical study of cavitating flows with thermodynamic effect. Comput. Fluids 39, 99–113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • E. Goncalvès, R.F. Patella, J. Rolland, B. Pouffary, G. Challier, Thermodynamic effect on a cavitating inducer in liquid hydrogen. J. Fluids Eng. 132, 111305 (2010)

    Article  Google Scholar 

  • J.P.G. Gustavsson, K.C. Denning, C. Segal, Hydrofoil cavitation under strong thermodynamic effect. J. Fluids Eng. 130, 091303(1)–091303(5) (2008)

    Article  Google Scholar 

  • R. Hirschi, P. Dupont, F. Avellan, et al., Centrifugal pump performance drop due to leading edge cavitation: numerical predictions compared with model tests. J. Fluids Eng. 120, 705–711 (1998)

    Article  Google Scholar 

  • J.W. Holl, M.L. Billet, D.S. Weir, Thermodynamic effects on developed cavitation. J. Fluids Eng. 97, 507–513 (1975)

    Article  Google Scholar 

  • J. Hord, Cavitation in liquid cryogens, I-Venturi. NASA Contractor Reports, CR-2054, 1972

    Google Scholar 

  • J. Hord, Cavitation in liquid cryogens, II-hydrofoil. NASA Contractor Reports, CR-2156; 1973a

    Google Scholar 

  • J. Hord, Cavitation in liquid cryogens, III-ogive. NASA Contractor Reports, NASA CR-2242, 1973b

    Google Scholar 

  • A. Hosangadi, V. Ahuja, Numerical study of cavitation in cryogenic fluids. J. Fluids Eng. 127, 267–281 (2005)

    Article  Google Scholar 

  • A. Hosangadi, V. Ahuja, R. Ungewitter, Analysis of thermal effects in cavitating liquid hydrogen inducers. J. Propuls. Power 23, 1225–1234 (2007)

    Article  Google Scholar 

  • B. Huang, Q. Wu, G. Wang, Numerical investigation of cavitating flow in liquid hydrogen. Int. J. Hydrog. Energy 39, 1698–1709 (2014a)

    Article  Google Scholar 

  • B. Huang, Y. Zhao, G.Y. Wang, Large eddy simulation of turbulent vortex cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 92, 113–124 (2014b)

    Article  Google Scholar 

  • J. Ishimoto, K. Kamijo, Numerical study of cavitating flow characteristics of liquid helium in a pipe. Int. J. Heat Mass Transf. 47, 149–163 (2004)

    Article  MATH  Google Scholar 

  • R.B. Jacobs, Prediction of symptoms of cavitation. J. Res. NBS 65C, 147–156 (1961)

    Google Scholar 

  • B. Ji, X. Luo, Y. Wu, X. Peng, Y. Duan, Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil. Int. J. Multiphase Flow 51, 33–43 (2013)

    Article  Google Scholar 

  • B. Ji, X. Luo, R.E. Arndt, Y. Wu, Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction. Ocean Eng. 87, 64–77 (2014)

    Article  Google Scholar 

  • H. Kato, Thermodynamic effect on incipient and developed sheet cavitation. International Symposium on Cavitation Inception, New Orleans, Dec 1984

    Google Scholar 

  • S. Kelly, C. Segal, J. Peugeot, Simulation of cryogenics cavitation. AIAA J. 49, 2502–2510 (2011)

    Article  Google Scholar 

  • K. Kikuta, Y. Yoshida, T. Hashimoto, et al., Influence of rotational speed on thermodynamic effect in a cavitating inducer. Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, Colorado, 2–6 Aug 2009

    Google Scholar 

  • R.F. Kunz, D.A. Boger, D.R. Stinebring, et al., A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput. Fluids 29, 849–875 (2000)

    Article  MATH  Google Scholar 

  • Q. Le, J.P. Franc, J.M. Michel, Partial cavities-global behavior and mean pressure distribution. J. Fluids Eng. 115, 243–248 (1993)

    Article  Google Scholar 

  • E.W. Lemmon, M.O. McLinden, M.L. Huber, REFPROP: Reference fluid thermodynamic and transport properties, NIST standard reference database 23, 2007

    Google Scholar 

  • J.B. Leroux, J.A. Astolfi, J.Y. Billard, An experimental study of unsteady partial cavitation. J. Fluids Eng. 126, 94–101 (2004)

    Article  Google Scholar 

  • H.Y. Li, S.A. Vasquez, Numerical simulation of steady and unsteady compressible multiphase flows. International Mechanical Engineering Congress & Exposition, Houston, 2012

    Google Scholar 

  • R.B. Medvitz, R.F. Kunz, D.A. Boger, et al., Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD. J. Fluids Eng. 124, 377–383 (2002)

    Article  Google Scholar 

  • C.L. Merkle, J. Feng P.E.O. Buelow, Computational modeling of sheet cavitation. Proceedings of 3rd International Symposium on Cavitation, Grenoble, 1998

    Google Scholar 

  • R.D. Moore, R.S. Ruggeri, Prediction of thermodynamic effects of developed cavitation based on liquid-nitrogen and freon 114 data in scaled venturis, NASA TN D-4899, 1962

    Google Scholar 

  • F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)

    Article  MATH  Google Scholar 

  • K. Niiyama, Y. Yoshida, S. Hasegawa, et al., Experimental investigation of thermodynamic effect on cavitation in liquid nitrogen. Proceedings of the 8th International Symposium on Cavitation, Singapore, 2012

    Google Scholar 

  • C.D. Ohl, M. Arora, R. Ikink, M. Delius, B. Wolfrum, Drug delivery following shock wave induced cavitation. Presented at Fifth International Symposium on Cavitation, Osaka, 2003

    Google Scholar 

  • F. Petitpas, J. Massoni, R. Saurel, et al., Diffuse interface model for high speed cavitating underwater systems. Int. J. Multiphase Flow 35, 747–759 (2009)

    Article  Google Scholar 

  • M. Petkovšek, M. Dular, IR measurements of the thermodynamic effects in cavitating flow. Int. J. Heat Fluid Fl. 44, 756–763 (2013)

    Article  Google Scholar 

  • M.S. Plesset, A. Prosperetti, Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145–185 (1977)

    Article  MATH  Google Scholar 

  • S.H. Rhee, T. Kawamura, H.Y. Li, Propeller cavitation study using an unstructured grid based Navier-Stoker solver. J. Fluids Eng. 127, 986–994 (2005)

    Article  Google Scholar 

  • R.S. Rzlggeri, R.D. Moore, Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds, NASA TN D-5292, 1969

    Google Scholar 

  • L.R. Sarosdy, A.J. Acosta, Note on observations of cavitation in different fluids. J. Basic Eng. 83, 399–400 (1961)

    Article  Google Scholar 

  • J. Sauer, G.H. Schnerr, Unsteady cavitating flow-A new cavitation model based on a modified front capturing method and bubble dynamics. Proceedings of 2000 ASME Fluid Engineering Summer Conference, Boston, 2000a

    Google Scholar 

  • J. Sauer, G.H. Schnerr, Unsteady cavitating flow-A new cavitation model based on a modified front capturing method and bubble dynamics. Proceedings of 2000 ASME Fluid Engineering Summer Conference, Boston, 2000b

    Google Scholar 

  • R. Saurel, O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239–271 (2001)

    Article  MATH  Google Scholar 

  • R. Saurel, P. Cocchi, P.B. Butler, Numerical study of cavitation in the wake of a hypervelocity underwater projectile. J. Propuls. Power 15, 513–522 (1999)

    Article  Google Scholar 

  • I. Senocak, W. Shyy, Interfacial dynamics-based modelling of turbulent cavitating flows, part-2: time-dependent computations. Int. J. Numer. Meth. Fl. 44, 997–1016 (2004a)

    Article  MATH  Google Scholar 

  • I. Senocak, W. Shyy, Interfacial dynamics-based modeling of turbulent cavitating flows, part-1: model development and steady-state computations. Int. J. Numer. Meth. Fl. 44, 975–995 (2004b)

    Article  MATH  Google Scholar 

  • A.K. Singhal, M.M. Athavale, H.Y. Li, et al., Mathematical basis and validation of the full cavitation model. J. Fluids Eng. 124(3), 617–624 (2002)

    Article  Google Scholar 

  • E. Sinibaldi, F. Beux, M.V. Salvetti, A numerical method for 3D barotropic flows in turbomachinery. Flow Turbul. Combust. 76, 371–381 (2006)

    Article  MATH  Google Scholar 

  • H. Soyama, D. Macodiyo, Improvement of fatigue strength on stainless steel by cavitating jet in air. Fifth International Symposium on Cavitation, Osaka, 2003

    Google Scholar 

  • W.A. Spraker, The effects of fluid properties on cavitation in centrifugal pumps. J. Eng. Power 87, 309–318 (1965)

    Article  Google Scholar 

  • H.A. Stahl, A.J. Stephanoff, Thermodynamic aspects of cavitation in centrifugal pumps. ASME J. Basic Eng. 78, 1691–1693 (1956)

    Google Scholar 

  • B. Stutz, J. Reboud, Two-phase flow structure of sheet cavitation. Phys. Fluids 9, 3678–3686 (1997a)

    Article  MathSciNet  MATH  Google Scholar 

  • B. Stutz, J.L. Reboud, Experiments on unsteady cavitation. Exp. Fluids 22, 191–198 (1997b)

    Article  MATH  Google Scholar 

  • M. Tanguay, T. Colonius, Progress in modeling and simulation of shock wave lithotripsy (SWL). Fifth International Symposium on Cavitation, Osaka, 2003

    Google Scholar 

  • Theory Guide, ANSYS, FLUENT 14.5 Documentation, 2012

    Google Scholar 

  • S.S. Thipse, Cryogenics (Alpha Science International, Oxford, UK, 2013)

    Google Scholar 

  • Y. Utturkar, J. Wu, G. Wang, W. Shyy, Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Prog. Aerosp. Sci. 41, 558–608 (2005)

    Article  Google Scholar 

  • M. Watanabe, L. Nagaura, S. Hasegawa, et al., Direct visualization for cavitating inducer in cryogenic flow (The 3rd report: visual observations of cavitation in liquid nitrogen), (in Japanese) JAXA Research and Development Memorandum, JAXA-RM-09-010, 2010

    Google Scholar 

  • Y. Yoshida, Y. Sasao, M. Watanabe, et al., Thermodynamic effect on rotating cavitation in an inducer. ASME J. Fluids Eng. 131, 091302-1–091302-7 (2009)

    Article  Google Scholar 

  • Y. Yoshida, H. Nanri, K. Kikuta, et al., Thermodynamic effect on subsynchronous rotating cavitation and surge mode oscillation in a space inducer. ASME J. Fluids Eng. 133, 061301-1–061301-7 (2011)

    Article  Google Scholar 

  • I. Yutaka, N. Tsukasa, N. Takao, Periodical shedding of cloud cavitation from a single hydrofoil in high-speed cryogenic channel flow. J. Therm. Sci. 18, 58–64 (2009a)

    Article  Google Scholar 

  • I. Yutaka, N. Tsukasa, N. Takao, Cavitation patterns on a plano-convex hydrofoil in a high-speed cryogenic cavitation tunnel. Proceedings of the 7th International Symposium on Cavitation, Ann Arbor, 17–22 Aug 2009b

    Google Scholar 

  • A. Zein, M. Hantke, G. Warnecke, Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229, 2964–2998 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • L.X. Zhang, B.C. Khoo, Computations of partial and super cavitating flows using implicit pressure-based algorithm (IPA). Comput. Fluids 73, 1–9 (2013)

    Article  MathSciNet  Google Scholar 

  • L.X. Zhang, B.C. Khoo, Dynamics of unsteady cavitating flow in compressible two-phase fluid. Ocean Eng. 87, 174–184 (2014)

    Article  Google Scholar 

  • X.B. Zhang, L.M. Qiu, H. Qi, X.J. Zhang, Z.H. Gan, Modeling liquid hydrogen cavitating flow with the full cavitation model. Int. J. Hydrog. Energy 33, 7197–7206 (2008a)

    Article  Google Scholar 

  • X.B. Zhang, L.M. Qiu, Y. Gao, X.J. Zhang, Computational fluid dynamic study on cavitation in liquid nitrogen. Cryogenics 48, 432–438 (2008b)

    Article  Google Scholar 

  • X. Zhang, Z. Wu, S. Xiang, L. Qiu, Modeling cavitation flow of cryogenic fluids with thermodynamic phase-change theory. Chin. Sci. Bull. 58, 567–574 (2013)

    Article  Google Scholar 

  • X.B. Zhang, W. Zhang, J.Y. Chen, et al., Validation of dynamic cavitation model for unsteady cavitating flow on NACA66. Sci. China Technol. Sci. 57, 819–827 (2014)

    Article  Google Scholar 

  • X.B. Zhang, J.K. Zhu, L.M. Qiu, et al., Calculation and verification of dynamical cavitation model for quasi-steady cavitating flow. Int. J. Heat Mass Transf. 86, 294–301 (2015)

    Article  Google Scholar 

  • D.F. Zhao, J.K. Zhu, L. Xu, et al., Visualization experiment of cavitating flow of cryogenic fluid in venturi tube. (In chinese). Cryog. Eng. (submitted)

    Google Scholar 

  • J.K. Zhu, Y. Chen, D.F. Zhao, X.B. Zhang, Extension of the Schnerr–Sauer model for cryogenic cavitation. Eur. J. Mech. B-Fluid 52, 1–10 (2015)

    Article  MathSciNet  Google Scholar 

  • J.K. Zhu, D.F. Zhao, L. Xu, Interactions of vortices, thermal effects and cavitation in liquid hydrogen cavitating flows. Int. J. Hydrog. Energy 41, 614–631 (2016)

    Article  Google Scholar 

  • P.J. Zwart, A.G. Gerber, T. Belamri, A two-phase flow model for predicting cavitation dynamics. Fifth International Conference on Multiphase Flow, Yokohama, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Zhang, X., Jiakai, Z. (2016). Cavitation Flow of Cryogenic Fluids. In: Yeoh, G. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-86-6_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-86-6_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-86-6

  • Online ISBN: 978-981-4585-86-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics