Skip to main content

Space Antennae Including Terahertz Antennae

Handbook of Antenna Technologies
  • 815 Accesses

Abstract

This chapter deals with the analysis of several kinds of space antennae with a special section devoted to THz antennae. In particular, horn antennae, either corrugated as spline profiles for data downlink and uplink communications and TT&C applications are developed. More innovative antenna designs based on the use of Electromagnetic BandGap (EBG) or Metamaterial structures (MTM) are included. These ones exhibit very promising properties to be used in applications such as TT&C or Navigation. Finally, due to the increasing interest in scientific missions operating at THz frequencies, a section including the last results of using MTM technologies for implementing antennae at THz bands for imaging space applications is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Amyotte E, Martins-Camelo L (2012) Antennas for satellite communications. In: Imbriale WA, Gao S, Boccia L (eds) Space antenna handbook, 1st edn. Wiley, Chichester, UK

    Google Scholar 

  • Baryshev A, Baselmans J, Freni A, Gerini G, Hoevers H, Iacono A, Neto A (2011) Progress in antenna coupled kinetic inductance detectors. IEEE Trans Terahertz Sci Technol 1:112–123

    Article  Google Scholar 

  • Bhattacharyya A, Goyette G (2013) Smooth wall multimode horns for high aperture efficiency. Theory, design and applications. In: Rao S, Sharma S, Shafai L (eds) Handbook of reflector antennas and feed systems, vol II, 1st edn, Feed systems. Artech House, Boston

    Google Scholar 

  • Bird T (2008) Feed antennas. In: Balanis C (ed) Modern antenna handbook. Wiley, Hoboken, pp 889–890

    Google Scholar 

  • Bird T, Granet C (2008) Fabrication and space-qualifying a lightweight corrugated horn with low sidelobes for global-earth coverage. IEEE Antennas Propag Mag 50:80–86

    Article  Google Scholar 

  • Bird T, Granet C, James G (2000) Lightweight compact multi-mode corrugated horn with low sidelobes for global-earth coverage. In: AP2000 conference, pp 165

    Google Scholar 

  • Biswas R, Ozbay E, Temelkuran B, Bayindir M, Sigalas M, Ho K (2001) Exceptionally directional sources with photonic-bandgap crystals. J Opt Soc Am B 18:1684–1689

    Article  Google Scholar 

  • Brand Y, Iriarte J, Cassivi Y, Fourmault A, Ederra I, Gonzalo R, De Maagt P (2009) WAAS space segment antenna based on EBG superstate gain enhancement technique. In: European conference on antennas and propagation, EuCAP 2009, pp 2613–2617

    Google Scholar 

  • Cheype C, Serier C, Thèvenot M, Monediere T, Reineix A, Jecko B (2002) An electromagnetic bandgap resonator antenna. IEEE Trans Antennas Propag 50:1285–1290

    Article  Google Scholar 

  • Day P, LeDuc H, Mazin B, Vayonakis A, Zmuidzinas J (2003) A broadband superconducting detector suitable for use in large arrays. Nature 425:817–821

    Article  Google Scholar 

  • de Maagt P, Gonzalo R, Vardaxoglou Y, Baracco J (2003) Electromagnetic bandgap antennas and components for microwave (sub)millimeter wave applications. IEEE Trans Antennas Propag 51:2667–2677

    Article  Google Scholar 

  • Diblanc M, Rodes E, Arnaud E, Thevenot M, Monediere T, Jecko B (2005) Circularly polarized metallic EBG antenna. IEEE Microwave Wireless Compon Lett 15:638–640

    Article  Google Scholar 

  • Doyle D, Pilbratt G, Tauber J (2009) The herschel and planck space telescopes. Proc IEEE 97:1403–1411

    Article  Google Scholar 

  • Ederra I, Gonzalo R, Alderman B, Huggard P, de Hon B, van Beurden M, Murk A, Marchand L, de Maagt P (2008) Electromagnetic bandgap based planar imaging array for 500 GHz. IEEE Trans Microwave Theory Tech 56:2556–2565

    Article  Google Scholar 

  • Ederra I, Gonzalo R, Martínez B, Alderman B, Huggard P, Murk A, Marchand L, de Maagt P (2013) Design and test of a 0.5 THz dipole antenna with integrated schottky diode detector on a high dielectric constant ceramic electromagnetic bandgap substrate. IEEE Trans Terahertz Sci Technol 3:584–593

    Article  Google Scholar 

  • Fehrembach A, Enoch S, Sentenac A (2001) Highly directive light sources using two-dimensional photonic crystal slabs. Appl Phys Lett 79:4280–4282

    Article  Google Scholar 

  • Feresidis A, Vardaxoglou J (2001) High gain planar antenna using optimised partially reflective surfaces. IEE Proc Microwave Antennas Propag 148:345–350

    Article  Google Scholar 

  • Galileo System Requirement Document (2002) ESA APPNS-REQ-00011. Issue 2 - Rev 1

    Google Scholar 

  • Goicoechea J, Isaak K, Swinyard B (2009) Exoplanet research with SAFARI: a far-IR imaging spectrometer for SPICA. arXiv:0901.3240

    Google Scholar 

  • Gonzalo R, de Maagt P, Sorolla M (1999) Enhanced patch antenna performance by suppressing surface waves using photonic band-gap structures. IEEE Trans Microwave Theory Tech 47:2131–2138

    Article  Google Scholar 

  • Gonzalo R, Ederra I, Mann C, de Maagt P (2001) Radiation properties of terahertz dipole antenna mounted on photonic crystal. Electron Lett 37:613–614

    Article  Google Scholar 

  • Gonzalo R, del Río C, Goñi D, Teniente J (2002) Horn antenna combining horizontal and vertical ridges. International Patent WO03/100907

    Google Scholar 

  • Granet C, James G (2005) Design of corrugated horns: a primer. IEEE Antennas Propag Mag 47:76–84

    Article  Google Scholar 

  • Granet C, Bird T, James G (2000) Compact multimode horn with low sidelobes for global earth coverage. IEEE Trans Antennas Propag 48:1125–1133

    Article  Google Scholar 

  • Granet C, James G, Bolton R, Moorey G (2004) A smooth-walled spline-profile horn as an alternative to the corrugated horn for wide band millimeter-wave applications. IEEE Trans Antennas Propag 52:848–854

    Article  Google Scholar 

  • Granet C, James G, Forsyth A (2008) Aperture antennas: waveguides and horns. In: Balanis C (ed) Modern antenna handbook, 1st edn. Wiley, Hoboken, pp 142–144

    Google Scholar 

  • GRASP software. http://www.ticra.com/products/software/grasp. Accessed 13 April 2015

  • Hajj M, Rodes E, Monédière T (2009) Dual-band EBG sectoral antenna using a single-layer FSS for UMTS application. IEEE Antennas Wirel Propag Lett 8:161–164

    Article  Google Scholar 

  • Hay S, Barker S, Granet C, Forsyth A, Bird T, Sprey M, Greene K (2001) Multibeam earth station antenna for a European Teleport Application. In: IEEE AP-S international symposium and URSI radio science meeting, vol 2. pp 300–303

    Google Scholar 

  • Ho KM, Chan CT, Soukoulis C, Biswas R, Sigalas M (1994) Photonic band gaps in three dimensions: new layer-by-layer periodic structure. Solid State Comm 89:413

    Article  Google Scholar 

  • Iriarte J, Ederra I, Gonzalo R, Gosh A, Laurin J, Caloz C, Brand Y, Gavrilovic M, Demers Y, de Maagt P (2006) EBG superstrate for gain enhancement of a circularly polarized patch antenna. In: IEEE antennas and propagation society international symposium, pp 2993–2996

    Google Scholar 

  • Iriarte J, Ederra I, Gonzalo R, Brand Y, Fourmault A, Demers Y, de Maagt P (2009) EBG superstrate array configuration for the WAAS space segment. IEEE Trans Antennas Propag 57:81–93

    Article  Google Scholar 

  • Jackson D, Alexopoulos N (1985) Gain enhancement methods for printed circuit antennas. IEEE Trans Antennas Propag 33:976–987

    Article  Google Scholar 

  • Jackson D, Oliner A (1988) A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Trans Antennas Propag 36:905–910

    Article  Google Scholar 

  • Jackson D, Oliner A, Ip A (1993) Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure. IEEE Trans Antennas Propag 41:344–348

    Article  Google Scholar 

  • Joannopoulos J, Meade R, Winn J (1995) Photonic crystals; molding the flow of light. Princeton University Press, New York

    MATH  Google Scholar 

  • Kanso A, Chantalat R, Naeem U, Chreim H, Thevenot M, Bila S, Monediere T (2011) Multifeed EBG dual-band antenna for spatial mission. Int J Antennas Propag 14p, Article ID 190358, doi:10.1155/2011/190358

    Google Scholar 

  • Lee Y, Yeo J, Mittra R, Lee Y, Park W (2005) Application of Electromagnetic Bandgap (EBG) superstrates with controllable defect for a class of patch antennas as spatial angular filters. IEEE Trans Antennas Propag 53:224–235

    Article  Google Scholar 

  • Lovat G, Burghignoli P, Capolino F, Jackson D, Wilton D (2006a) Analysis of directive radiation from a line source in a metamaterial slab with low permittivity. IEEE Trans Antennas Propag 54:1017–1030

    Article  Google Scholar 

  • Lovat G, Burghignoli P, Capolino F, Jackson D (2006b) Highly-directive planar leaky-wave antennas: a comparison between metamaterial-based and conventional designs. In: EuMA (European Microwave Association) Proceedings, vol 2. pp 12–20

    Google Scholar 

  • Maffei B, Ade P, Gannaway F, Wakui E, Wylde R, Murphy J, Colgan R, Dupuy J, Parini C (2000) Corrugated gaussian backto- back horns for cosmic microwave background continuum receivers, 24th QMW antenna symposium, pp 38–41

    Google Scholar 

  • Martinez B, Ederra I, Gonzalo R, Alderman B, Azcona L, Huggard P, de Hon B, Hussain A, Andrews S, Marchand L, de Maagt P (2007) Manufacturing tolerance analysis, fabrication and characterisation of 3D submillimetre wave electromagnetic bandgap crystals. IEEE Trans Microwave Theory Tech 55:672–681

    Article  Google Scholar 

  • Mician Microwave Wizard software. http://www.mician.com. Accessed 08 April 2015

  • Milligan T (2005) Modern antenna design, 2nd edn. Wiley, New York, pp 358–359

    Book  Google Scholar 

  • Olver A, Clarricoats P, Kishk A, Shafai L (1994) Microwave horns and feeds, vol 39, IEE electromagnetic waves series. The Institution of Electrical Engineers, London

    Book  Google Scholar 

  • Oses A, Iriarte J, Ederra I, Gonzalo R, de Maagt P (2009) Multiband EBG navigation antenna. In: IEEE International workshop on antenna technology, iWAT, pp 1–4

    Google Scholar 

  • Pozar D (1983) Considerations for millimetre wave printed antennas. IEEE Trans Antennas Propag 31:740–747

    Article  Google Scholar 

  • Rao S (1999) Design and analysis of multiple-beam reflector antennas. IEEE Antennas Propag Mag 41:53–59

    Article  Google Scholar 

  • Rodes E, Diblanc M, Drouet J, Thevenot M, Monediere T, Jecko B (2006) Design of a dual-band EBG resonator antenna using capacitive FSS. In: Antennas and propagation society international symposium, IEEE, pp 3009–3012

    Google Scholar 

  • Rudge A, Milne K, Olver A, Knight P (1982) The handbook of antenna design, vol 15 and 16, IEE electromagnetic waves series. The Institution of Electrical Engineers, London

    Book  Google Scholar 

  • Sievenpiper D, Zhang L, Broas R, Alexopolus N, Yablonovitch E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microwave Theory Tech 47:2059–2074

    Article  Google Scholar 

  • Sözuer H, Dowling J (1994) Photonic band calculations for woodpile structure. J Mod Opt 41:231–239

    Article  Google Scholar 

  • Teniente J (2003) Modern corrugated horn antennas. Ph.D. dissertation, Electric and Electronic Engineering Department, Public University of Navarra

    Google Scholar 

  • Teniente J, Gonzalo R, del Río C (1999) Gaussian profiled horn antenna for hispasat 1C satellite. Int J Infrared Millimetr Waves 20:1809–1815

    Article  Google Scholar 

  • Teniente J, Gonzalo R, del Río C (2002a) Ultra wide band corrugated gaussian profiled horn antenna design. IEEE Microwave and Wireless Compon Lett 12:20–21

    Article  Google Scholar 

  • Teniente J, Goñi D, Gonzalo R, del Rio C (2002b) Choked gaussian antenna. Extremely low sidelobe compact antenna design. IEEE Antennas Wireless Propag Lett 1:200–202

    Article  Google Scholar 

  • Teniente J, Gonzalo R, del Rio C (2005) State of the art of corrugated horn antennas that combine horizontal and vertical corrugations. In: Proceeding of the 11th international symposium on antenna technology and applied electromagnetics, (ANTEM), pp 86–87

    Google Scholar 

  • Teniente J, Gonzalo R, del Rio C (2006) Innovative high gain corrugated horn antenna combining horizontal and vertical corrugations. IEEE Antennas Wireless Propag Lett 5:380–383

    Article  Google Scholar 

  • Teniente J, Gonzalo R, del Rio C (2009) Satellite Horn Antennas Design. In: Proceeding of the 3rd European conference on antennas and propagation (EuCAP), pp 3081–3084

    Google Scholar 

  • Thèvenot M, Denis M, Reineix A, Jecko B (1999a) Design of a new photonic cover to increase antenna directivity. Microwave Opt Technol Lett 22:136–139

    Article  Google Scholar 

  • Thèvenot M, Cheype C, Reineix A, Jecko B (1999b) Directive photonic-bandgap antennas. IEEE Trans Microwave Theory Tech 47:2115–2121

    Article  Google Scholar 

  • Trentini G (1956) Partially reflecting sheet arrays. IRE Trans Antennas Propag 4:666–671

    Article  Google Scholar 

  • Vayonakis A, Schlaerth J, Kumar S, Gao J, Day P, Mazin B, Ferry M, Noroozian O, Glenn J, Golwala S, LeDuc H, Zmuidzinas J (2008) Antenna-coupled Microwave Kinetic Inductance detectors (MKIDs) for mm and submm imaging arrays. In: 19th international symposium on space terahertz technology, pp 141

    Google Scholar 

  • Viskum H, Sorensen S (1994) Dual offset shaped reflectors optimized for gain and XPD performance. Antennas Propag Soc Int Symp 2:894–897

    Google Scholar 

  • Yang F, Rahmat-Samii Y (2003) Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans Antennas Propag 51:2936–2946

    Article  Google Scholar 

  • Zeng L, Bennett C, Chuss D, Wollack E (2010) A low cross-polarization smooth-walled horn with improved bandwidth. IEEE Trans Antennas Propag 58:1383–1387

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gonzalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Gonzalo, R., Ederra, I., Iriarte, J.C., Teniente, J. (2015). Space Antennae Including Terahertz Antennae. In: Chen, Z. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-75-7_123-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-75-7_123-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4560-75-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Space Antennas including Terahertz Antennas
    Published:
    19 November 2015

    DOI: https://doi.org/10.1007/978-981-4560-75-7_123-2

  2. Original

    Space Antennae Including Terahertz Antennae
    Published:
    29 May 2015

    DOI: https://doi.org/10.1007/978-981-4560-75-7_123-1