Skip to main content

Optical Fibers

  • Living reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

Integrating optical fibers into textiles opens up a wide range of new, fascinating applications – starting from data transmission to sensory abilities, new lightening concepts, and advanced medical therapies.

This chapter gives first an overview on the working principle and light transmission mechanisms in optical fibers. It discusses different types of optical fiber materials, before it summarizes recent developments in processing these materials into textile structures. Finally different application fields are explored, which leads to highlighting future trends and potentials of optical fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitschke F (2005) Fibre optics: physics and technology. Elsevier, Munich

    Google Scholar 

  2. Ziemann O, Krauser J, Zamzow P, Daum W (2008) POF handbook: optical short range transmission systems. Springer, Berlin

    Google Scholar 

  3. Michaeli W (2006) Einführung in die Kunststoffverarbeitung. Hanser, Munich

    Google Scholar 

  4. Nalwa HS (2004) Polymer optical fibres. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  5. Katoot MW (1999) Polymer optical fibres and process for manufacture thereof. US patent 5861129A

    Google Scholar 

  6. Hackenberg MR (2001) Untersuchungen zu Versagemechanismen von Kunststofflichtwellenleitern unter thermischer und mechanischer Last. Dissertation, Ulm

    Google Scholar 

  7. Oscarsson L, Jacobsen Heimdal E, Lundell T, Peterson J (2009) Flat knitting of a light emitting textile with optical fibres. Autex ResJ 9:61–65

    Google Scholar 

  8. Eichhoff J, Hehl A, Jockenhoevel S, Gries T (2013) Textile fabrication technologies for embedding electronic functions into fibres, yarns and fabrics. In: Multidisciplinary know-how for smart-textiles developers. Woodhead Publishing, Oxford

    Google Scholar 

  9. Selm B, Gürel E, Rothmaier M, Rossi R, Scherer L (2010) Polymeric optical fiber fabrics for illumination and sensorial applications in textiles. J Intell Mater Syst Struct 21:1061–1071

    Article  Google Scholar 

  10. Park S, Jayaraman S (2001) Adaptive and responsive textile structures (ARTS). In: Smart Fibers, fabrics and clothing. Woodhead Publishing, Cambridge

    Google Scholar 

  11. Gopalsamy C, Park S, Rajamanickam R, Jayaraman S (1999) The Wearable Motherboard: the first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Reality 4(3):152–168

    Google Scholar 

  12. Cochrane C, Mordon SR, Lesage JC, Koncar V (2013) New design of textile light diffusers for photodynamic therapy. Mater Sci Eng C 33:1170–1175

    Article  Google Scholar 

  13. Khan T, Unternaehrer M, Buchholz J (2006) Performance of a contact textile-based light diffuser for photodynamic therapy. Photodiagnosis Photodyn Ther 3:51–60

    Article  Google Scholar 

  14. Mordon S, Cochrane C, Lesage JC, Koncar V (2011) Innovative engineering design of a textile light diffuser for photodynamic therapy. Photodiagnosis Photodyn Ther 8:142–143

    Article  Google Scholar 

  15. Medwow (2013) http://www.medwow.com. Accessed 30 Nov 2013

  16. Gupta BD (2006) Fiber optic sensors - principles and applications. Jai Bharat Printing Press, New Delhi

    Google Scholar 

  17. Grattan KT, Sun T (2000) Fibre optic sensor technology: an overview. Sensors Actuators 82:40–61

    Article  Google Scholar 

  18. Lee B (2003) Review of the present status of optic fibre sensors. Opt Fibre Technol 9:57–79

    Article  Google Scholar 

  19. Chou C, Wu HT, Yu CJ (2007) Fibre-optic biosensors for antigen/antibody kinetic assays. SPIE Newsroom: Biomedical Optics and Medical Imaging

    Google Scholar 

  20. El-Sherif M (2005) Integration of fibre optic sensors and sensing networks into textile structures. In: Wearable electronics and photonics. Woodhead Publishing, Cambridge

    Google Scholar 

  21. Zhang B, Kahrizi M (2007) High-temperature resistance fiber Bragg Grating temperature sensor fabrication. IEEE Sensors J 7:586–591

    Article  Google Scholar 

  22. Mishra V, Singh N, Tiwari U, Kapur P (2011) Fiber grating sensors in medicine: current and emerging applications. Sensors Actuators A 167:279–290

    Article  Google Scholar 

  23. Lee CH, Lee J, Kim MK, Kim KT (2011) Characteristics of a fibre Bragg Grating temperature sensor using the thermal strain of an external tube. J Korean Phy Soc 59:3188–3191

    Article  Google Scholar 

  24. Li Q, Yang H, Li E, Liu Z, Wie K (2012) Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg Grating. Opt Express 20:11740–11752

    Article  Google Scholar 

  25. Kim KT, Kim IS, Lee CH, Lee J (2012) A temperature-insensitive cladding-etched fiber Bragg Grating using a liquid mixture with a negative thermo-optic coefficient. Sensors 12:7886–7892

    Article  Google Scholar 

  26. Khan I, Ahmed I (2012) Sensing principle analysis of FBG sensors. J Electric Electron Eng 1:1–6

    Article  Google Scholar 

  27. Zhan Q, Liu N, Fink T (2012) Fiber-optic pressure sensor based on π-phase-shifted Fiber Bragg Grating on side-hole fiber. Photon Technol Lett 24:1519–1523

    Article  Google Scholar 

  28. Sakai K, Nakagami G, Matsui N (2008) Validation and determination of the sensing area of the Kinotex sensor as part of development of a new matress with an interface pressure-sensing system. Bio Sci trends 2:36–43

    Google Scholar 

  29. Krebber K (2013) Smart technical textiles based on optical fiber technology. In: Current developments in optical fiber technology. InTech, Rijeka, pp 319–344

    Google Scholar 

  30. Rothmaier N, Luong MP, Clemens F (2008) Textile pressure sensor made flexible plastic optical fibers. Sensors 8:4318–4329

    Article  Google Scholar 

  31. Liehr S et al (2008) Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles. In: Photonics Europe. International Society for Optics and Photonics, pp 700302-700302–15

    Google Scholar 

  32. Zou X, Wu N, Tian Y (2013) Rapid miniature fiber optic pressure sensors for blast wave measurements. Opt Lasors Eng 51:134–139

    Article  Google Scholar 

  33. Wang W, Jiang X, Yu Q (2012) Temperature self-compensation fiber pressure sensor based on fiber Bragg Grating and Fabry-Perot interference multiplexing. Optics Commun 285:3466–3470

    Article  Google Scholar 

  34. Bremer K, Lewis E, Leen G (2011) Fabrication of an all-glass fibre optic pressure and temperature sensor. Proc Eurosensors 25:503–506

    Google Scholar 

  35. Pandey NK, Yadav BC (2007) Fiber optic pressure sensor and monitoring of structural defects. Optica Appl 27:57–63

    Google Scholar 

  36. Alwis L, Sun T, Grattan KTV (2013) Optical fibre-based sensor technology for humidity and moisture measurement: review of recent progress. Measurement 46:4052–4074

    Article  Google Scholar 

  37. Dunne L, Walsh P, Caulfield B (2007) A system for wearable monitoring of seated posture in computer users. In: 4th international workshop on wearable and implantable body sensor networks proceedings, Aachen/Germany, vol 13, pp 203–207

    Google Scholar 

  38. Fereira da Silva A, Rocha RP, Carmo JP, Correia JH (2013) Photonic sensors based on flexible materials with FBGs for use on biomedical applications. In: Current developments in optical fiber technology. InTech, Rijeka, pp 105–132

    Google Scholar 

  39. Grillet A (2007) Optical fibre sensors embedded into technical textile for healthcare. Tutorial on SFIT, 4th international workshop on wearable and implantable body sensor networks (BSN’07), Aachen

    Google Scholar 

  40. Yokokawa M, Miyahara Y, Ikeda S (2010) Evaluation and application of optical fiber pressure sensor as a new real time respiration monitoring system for radiation therapy. In: Proceedings of the 52nd annual ASTRO meeting, San Diego, vol 78. p S673

    Google Scholar 

  41. Šprager S, Zazula D (2013) Detection of Heartbeat and Respiration from optical Interferometric signal by using wavelet transform. Comput Methods Programs Biomed 111:41–51

    Article  Google Scholar 

  42. Kingsley SA, Sriram S, Pollick A (2004) Photrodes (TM) for physiological sensing. In: Optical fibers and sensors for medical applications, In Biomedical Optics 2004. International Society for Optics and Photonics, Bellingham, vol IV, pp 158–166

    Google Scholar 

  43. Fernandes MS, Correia JH, Mendes PM (2013) Electro-optic acquisition system for ECG sensor applications. Sens Actuators A Phy 203:316–323

    Article  Google Scholar 

  44. Pasche S, Schyrr B, Wenger B (2013) Smart textiles with biosensing capabilities. Adv Sci Technol 80:129–135

    Article  Google Scholar 

  45. Renganathan B, Sastikumar D, Raj S, Ganesan AR (2014) Fiber optic gas sensors with vanadium oxide and Tungsten Nanoparticle coated cladding. Optics Commun 315:74–78

    Article  Google Scholar 

  46. Kudo H, Wang X, Suzuki Y (2012) Fiber-optic biochemical gas sensor (Bio-Sniffer) for sub-Ppb monitoring of formaldehyde vapor. Sens Actuators B 1:486–492

    Article  Google Scholar 

  47. Jiang H, Yang R, Tang X (2013) Multilayer fiber optic sensor for In Situ gas monitoring in harsh environments. Sens Actuators B 177:205–212

    Article  Google Scholar 

  48. Coyle S., Moriss D, Lau K (2009) Textile sensors to measure sweat pH and sweat-rate during exercise. In: Proceedings of 3rd international conference on pervasive computing technologies for healthcare, London

    Google Scholar 

  49. Neuhaeuser J, Wilkening M, Diehl-Schmidt J (2012) Different sADL day patterns recorded by an interaction-system based on radio modules. In: Ambient assisted living, Advanced technologies and societal change. Springer, Berlin, pp 95–105

    Chapter  Google Scholar 

  50. Torres-Solis J, Falk TH, Cahu T (2010) A review of indoor localization technologies: towards navigational assistance for topographical disorientation. In: Ambient intelligence. In-Tech, Rijeka, pp 51–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Schwarz-Pfeiffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this entry

Cite this entry

Schwarz-Pfeiffer, A., Mecnika, V., Beckers, M., Gries, T., Jockenhoevel, S. (2014). Optical Fibers. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-68-0_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-68-0_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4451-68-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics