Skip to main content

Smart Nanofibrous Membranes with Controllable Porous Structure and Surface Wettability for High Efficient Separation Materials

  • Living reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

High-performance separation materials head one of the top materials facing the future environmental issues such as liquid–air separation, oil spill cleanup, and oil–water separation. Nanotechnology is responding to these challenges by designing and fabricating functional nanofibrous membranes optimized for separation applications. The route toward such nano-objects is based primarily on electrospinning, a highly versatile method that allows the fabrication of continuous fibers with diameters down to a few nanometers. This chapter focuses on the recent progress on the electrospun nanofibrous membranes for high efficient separation applications. Nanofibers with complex architectures, such as adhesion structure, porous structure, core–shell structure, and bio-inspired structure, have been fabricated by special electrospinning methods. By the introduction of low surface energy materials such as fluorinated polyurethane and polybenzoxazine, the pristine nanofibers were endowed with promising superwettability, which significantly boosted the separation selectivity and efficiency. And nanoparticles such as SiO2 and Al2O3 were used to create functional membranes with hierarchical structures, thus further improving the separation performance. Furthermore, the demonstration of electrospun nanofibers used for advanced separation applications has indicated that their impact has been realized well and is encouraging and will continually represent a key technology to ensure sustainable environment and human lives for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Kwon G, Kota AK, Li Y, Sohani A, Mabry JM, Tuteja A (2012) On-demand separation of oil–water mixtures. Adv Mater 24(27):3666–3671. doi:10.1002/adma.201201364

    Article  Google Scholar 

  2. Zhou X, Zhang Z, Xu X, Guo F, Zhu X, Men X, Ge B (2013) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interfaces 5(15):7208–7214. doi:10.1021/am4015346

    Article  Google Scholar 

  3. Wang X, Ding B, Yu J, Wang M (2011) Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 6(5):510–530. doi:10.1016/j.nantod.2011.08.004

    Article  Google Scholar 

  4. Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47(20):3696–3717. doi:10.1002/anie.200702046

    Article  Google Scholar 

  5. Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L (2012) Unidirectional water-penetration composite fibrous film via electrospinning. Soft Matter 8(22):5996. doi:10.1039/c2sm25514f

    Article  Google Scholar 

  6. Lee S, Obendorf SK (2007) Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res J 77(9):696–702. doi:10.1177/0040517507080284

    Article  Google Scholar 

  7. Ma H, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21(21):7507. doi:10.1039/c0jm04308g

    Article  Google Scholar 

  8. Yuan J, Xu Y, Müller AHE (2011) One-dimensional magnetic inorganic–organic hybrid nanomaterials. Chem Soc Rev 40(2):640. doi:10.1039/c0cs00087f

    Article  Google Scholar 

  9. Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Book  Google Scholar 

  10. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90(9):4836. doi:10.1063/1.1408260

    Article  Google Scholar 

  11. Reneker D, Yarin A, Zussman E, Xu H (2007) Electrospinning of nanofibers from polymer solutions and melts. Adv Appl Mech 41:43–346. doi:10.1016/S0065-2156(07)41002-X

    Article  Google Scholar 

  12. Lomax GR (2007) Breathable polyurethane membranes for textile and related industries. J Mater Chem 17(27):2775. doi:10.1039/b703447b

    Article  Google Scholar 

  13. Yoon B, Lee S (2011) Designing waterproof breathable materials based on electrospun nanofibers and assessing the performance characteristics. Fibers Polym 12(1):57–64. doi:10.1007/s12221-011-0057-9

    Article  Google Scholar 

  14. Bagherzadeh R, Latifi M, Najar SS, Tehran MA, Gorji M, Kong L (2011) Transport properties of multi-layer fabric based on electrospun nanofiber mats as a breathable barrier textile material. Text Res J 82(1):70–76. doi:10.1177/0040517511420766

    Article  Google Scholar 

  15. Sambaer W, Zatloukal M, Kimmer D (2011) 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci 66(4):613–623. doi:10.1016/j.ces.2010.10.035

    Article  Google Scholar 

  16. Mukhopadhyay A, Vinay Kumar M (2008) A review on designing the waterproof breathable fabrics part I: fundamental principles and designing aspects of breathable fabrics. J Ind Text 37(3):225–262. doi:10.1177/1528083707082164

    Article  Google Scholar 

  17. Hae Wook A, Chung Hee P, Seung Eun C (2011) Waterproof and breathable properties of nanoweb applied clothing. Text Res J 81(14):1438–1447. doi:10.1177/0040517510392462

    Article  Google Scholar 

  18. Zhuo H, Hu J, Chen S, Yeung L (2008) Preparation of polyurethane nanofibers by electrospinning. J Appl Polym Sci 109(1):406–411. doi:10.1002/app.28067

    Article  Google Scholar 

  19. Han J, Cao RW, Chen B, Ye L, Zhang AY, Zhang J, Feng ZG (2011) Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on l-lysine diisocyanate and l-lysine chain extender. J Biomed Mater Res A 96(4):705–714. doi:10.1002/jbm.a.33023

    Article  Google Scholar 

  20. Ge J, Si Y, Fu F, Wang J, Yang J, Cui L, Ding B, Yu J, Sun G (2013) Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. RSC Adv 3(7):2248–2255. doi:10.1039/C2RA22111J

    Article  Google Scholar 

  21. Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27. doi:10.1016/s1369-7021(10)70200-5

    Article  Google Scholar 

  22. Buruaga L, Sardon H, Irusta L, González A, Fernández-Berridi MJ, Iruin JJ (2010) Electrospinning of waterborne polyurethanes. J Appl Polym Sci 115(2):1176–1179. doi:10.1002/app.31219

    Article  Google Scholar 

  23. Li XH, Ding B, Lin JY, Yu JY, Sun G (2009) Enhanced mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers. J Phys Chem C 113(47):20452–20457. doi:10.1021/jp9076933

    Article  Google Scholar 

  24. Zhao F, Wang X, Ding B, Lin J, Hu J, Si Y, Yu J, Sun G (2011) Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties. RSC Adv 1(8):1482–1488. doi:10.1039/C1RA00605C

    Article  Google Scholar 

  25. Cheng C, Chen J, Chen F, Hu P, Wu XF, Reneker DH, Hou H (2010) High-strength and high-toughness polyimide nanofibers: synthesis and characterization. J Appl Polym Sci 116(3):1581–1586. doi:10.1002/app.31523

    Google Scholar 

  26. Wang J, Raza A, Si Y, Cui L, Ge J, Ding B, Yu J (2012) Synthesis of superamphiphobic breathable membranes utilizing SiO2 nanoparticles decorated fluorinated polyurethane nanofibers. Nanoscale 4(23):7549–7556. doi:10.1039/C2NR32883F

    Article  Google Scholar 

  27. Binner ER, Robinson JP, Kingman SW, Lester EH, Azzopardi BJ, Dimitrakis G, Briggs J (2013) Separation of oil/water emulsions in continuous flow using microwave heating. Energy Fuel 27(6):3173–3178. doi:10.1021/ef400634n

    Article  Google Scholar 

  28. Kaombe DD, Lenes M, Toven K, Glomm WR (2013) Turbiscan as a tool for studying the phase separation tendency of pyrolysis oil. Energy Fuel 27(3):1446–1452. doi:10.1021/ef302121r

    Article  Google Scholar 

  29. Kojima T, Takayama S (2013) Microscale determination of aqueous two phase system binodals by droplet dehydration in oil. Anal Chem 85(10):5213–5218. doi:10.1021/ac400628b

    Article  Google Scholar 

  30. Zhai W, Li G, Yu P, Yang L, Mao L (2013) Silver phosphate/carbon nanotube-stabilized pickering emulsion for highly efficient photocatalysis. J Phys Chem C 117(29):15183–15191. doi:10.1021/jp404456a

    Article  Google Scholar 

  31. Lin J, Ding B, Yang J, Yu J, Sun G (2012) Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale 4(1):176. doi:10.1039/c1nr10895f

    Article  Google Scholar 

  32. Haberko J, Raczkowska J, Bernasik A, Rysz J, Budkowski A, Luzny W (2007) Pattern replication in polyaniline-polystyrene thin films. Synth Met 157(22–23):935–939. doi:10.1016/j.synthmet.2007.09.004

    Article  Google Scholar 

  33. Ding B, Lin J, Wang X, Yu J, Yang J, Cai Y (2011) Investigation of silica nanoparticle distribution in nanoporous polystyrene fibers. Soft Matter 7(18):8376–8383. doi:10.1039/C1SM05791J

    Article  Google Scholar 

  34. Lin J, Ding B, Yu J, Hsieh Y (2010) Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces 2(2):521–528. doi:10.1021/am900736h

    Article  Google Scholar 

  35. Lin J, Wang X, Ding B, Yu J, Sun G, Wang M (2012) Biomimicry via electrospinning. Crit Rev Solid State Mater Sci 37(2):94–114. doi:10.1080/10408436.2011.627096

    Article  Google Scholar 

  36. Zhao Y, Qin M, Wang A, Kim D (2013) Bioinspired superhydrophobic carbonaceous hairy microstructures with strong water adhesion and high gas retaining capability. Adv Mater 25(33):4561–4565. doi:10.1002/adma.201300858

    Article  Google Scholar 

  37. Lin J, Tian F, Shang Y, Wang F, Ding B, Yu J (2012) Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale 4(17):5316–5320. doi:10.1039/C2NR31515G

    Article  Google Scholar 

  38. Lin J, Tian F, Shang Y, Wang F, Ding B, Yu J, Guo Z (2013) Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale 5(7):2745–2755. doi:10.1039/C3NR34008B

    Article  Google Scholar 

  39. Perles CE, Volpe PLO, Bombard AJF (2012) Study of the cation and salinity effect on electrocoalescence of water/crude oil emulsions. Energy Fuel 26(11):6914–6924. doi:10.1021/ef301433m

    Google Scholar 

  40. Peng J, Liu Q, Xu Z, Masliyah J (2012) Novel magnetic demulsifier for water removal from diluted bitumen emulsion. Energy Fuel 26(5):2705–2710. doi:10.1021/ef2014259

    Article  Google Scholar 

  41. Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L (2013) Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv Mater 25(30):4192–4198. doi:10.1002/adma.201301480

    Article  Google Scholar 

  42. Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L (2013) Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 25(14):2071–2076. doi:10.1002/adma.201204520

    Article  Google Scholar 

  43. Shang Y, Si Y, Raza A, Yang L, Mao X, Ding B, Yu J (2012) An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation. Nanoscale 4(24):7847–7854. doi:10.1039/C2NR33063F

    Article  Google Scholar 

  44. Shi Z, Zhang W, Zhang F, Liu X, Wang D, Jin J, Jiang L (2013) Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv Mater 25(17):2422–2427. doi:10.1002/adma.201204873

    Article  Google Scholar 

  45. Osakai T, Yuguchi Y, Gohara E, Katano H (2010) Direct label-free electrochemical detection of proteins using the polarized oil/water interface. Langmuir 26(13):11530–11537. doi:10.1021/la100769q

    Article  Google Scholar 

  46. Raza A, Si Y, Wang X, Ren T, Ding B, Yu J, Al-Deyab SS (2012) Novel fluorinated polybenzoxazine–silica films: chemical synthesis and superhydrophobicity. RSC Adv 2(33):12804–12811. doi:10.1039/C2RA21138F

    Article  Google Scholar 

  47. Huang M, Si Y, Tang X, Zhu Z, Ding B, Liu L, Zheng G, Luo W, Yu J (2013) Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J Mater Chem A 1(45):14071–14074. doi:10.1039/C3TA13385K

    Article  Google Scholar 

  48. Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477(7365):443–447. doi:10.1038/nature10447

    Article  Google Scholar 

  49. Lafuma A, Quere D (2003) Superhydrophobic states. Nat Mater 2(7):457–460. doi:10.1038/nmat924

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this entry

Cite this entry

Si, Y., Tang, X., Yu, J., Ding, B. (2014). Smart Nanofibrous Membranes with Controllable Porous Structure and Surface Wettability for High Efficient Separation Materials. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-68-0_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-68-0_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4451-68-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics