Skip to main content

Part of the book series: Springer Tracts in Nature-Inspired Computing ((STNIC))

  • 505 Accesses

Abstract

Since efficient material usage in a structure is an essential intention in engineering design, objective of a structural optimization algorithm should be obtaining the lightest and stiffest structure while considering specific design constraints. Evolutionary structural optimization (ESO) method has been introduced by Xie and Steven in 1993 to overcome structural optimization problems by improving and optimizing the design of structures. Although the algorithm depends on a plain inspiration, performance level of the ESO algorithm has increased owing to the contributions of wide-ranging studies in the subsequent years. This heuristic method has appeared on a simple—sometimes defined as intuitive—idea that is eliminating (or removing) the inefficient elements from the initial design region and attaining a fully stressed structure with an updated topology. Such a process is performed iteratively until an optimum layout is achieved, or until a specified volume is acquired; and the decision of process termination is executed over the feasibility of the designs achieved. This optimization algorithm is based on finite element method and has showed its superiorities by subsequent studies in various disciplines. Within this chapter, a brief on the basis and the main improvement steps of evolutionary structural optimization is presented. Different approaches on objectives, constraints, processing and terminating will be summarized. Thereafter, efficiency and capability of the method will be demonstrated over some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lloyd P (2000) Storytelling and the development of discourse in the engineering design process. Des Stud 21(4):357–373

    Article  Google Scholar 

  2. Skepper N, Straker L, Pollock C (2000) A case study of the use of ergonomics information in a heavy engineering design process. Int J Ind Ergon 26(3):425–435

    Article  Google Scholar 

  3. Talatahari S, Azizi M (2020) Chaos game optimization: a novel metaheuristic algorithm. Artif Intell Rev

    Google Scholar 

  4. Özkal FM (2012) Design and experimental verification of the optimum reinforcement layout for reinforced concrete members with the aid of topology optimization and strut-and-tie modeling methods. Ph.D. thesis, Atatürk University, Turkey

    Google Scholar 

  5. Tang D, Zheng L, Li Z, Li D, Zhang S (2000) Re-engineering of the design process for concurrent engineering. Comput Ind Eng 38(4):479–491

    Article  Google Scholar 

  6. Eversheim W, Bochtler W, Gräßler R, Kölscheid W (1997) Simultaneous engineering approach to an integrated design and process planning. Eur J Oper Res 100(2):327–337

    Article  MATH  Google Scholar 

  7. Yoely YM, Hanniel I, Amir O (2020) Structural optimization with explicit geometric constraints using a B-spline representation. Mech Based Des Struct Mach

    Google Scholar 

  8. Talaslıoğlu T (2004) Evrimsel gelişim algoritmaları ile yapı elemanları tasarım optimizasyonu. Ph.D. thesis, Çukurova University, Turkey

    Google Scholar 

  9. Pourazady M, Fu Z (1996) An integrated approach to structural shape optimization. Comput Struct 60(2):279–289

    Article  MATH  Google Scholar 

  10. El Hami A, Kadry S (2016) Global optimization method for design problems. Eng Rev 36(2):149–155

    Google Scholar 

  11. Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191(47–48):5485–5498

    Article  MATH  Google Scholar 

  12. Wang L, Zhang H, Zhu M, Chen YF (2020) A new evolutionary structural optimization method and application for aided design to reinforced concrete components. Struct Multidisc Optim 62:2599–2613

    Article  Google Scholar 

  13. Chen L, Xu L, Wang K, Li B, Hong J (2020) Parametric structural optimization of 2D complex shape based on isogeometric analysis. Comput Model Eng Sci 124(1):203–225

    Google Scholar 

  14. Klarbring A (2008) An introduction to structural optimization. Springer, Netherlands, Berlin Heidelberg

    MATH  Google Scholar 

  15. Sokolowski J, Zolesio JP (2003) Introduction to shape optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

    Google Scholar 

  16. Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197(33–40):2976–2988

    Article  MathSciNet  MATH  Google Scholar 

  17. Özkal FM, Uysal H (2010) Examination of a novel approach for the best topology selection on bridge type structures. In: 9th international congress on advances in civil engineering, Trabzon, Turkey

    Google Scholar 

  18. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  19. Li Q, Steven GP, Xie YM (1999) Displacement minimization of thermoelastic structures by evolutionary thickness design. Comput Methods Appl Mech Eng 179(3–4):361–378

    Article  MATH  Google Scholar 

  20. Özkal FM, Uysal H (2009) General aspects of evolutionary structural optimization: a review. Pamukkale Univ J Eng Sci 15(3):383–393

    Google Scholar 

  21. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  22. Özkal FM, Uysal H (2010) A new performance index formulation aiming to attain fully stressed designs for topology optimization problems. Sci Res Essays 5(15):2027–2036

    Google Scholar 

  23. Maier G (1973) Limit design in the absence of a given layout: a finite element, zero-one programming problem. In: Gallagher RH, Zienkiewicz OC (eds) Optimum structural design: theory and applications. Wiley, London, pp 223–239

    Google Scholar 

  24. Rodriguez-Velazquez J, Seireg AA (1985) Optimizing the shapes of structures via a rule-based computer program. Comput Mech Eng 4:20–28

    Google Scholar 

  25. Atrek E (1989) SHAPE: a program for shape optimization of continuum structures. In: Brebbia CA, Hernandez S (eds) Computer aided optimum design of structures: applications. Computation Mechanics Publications, Southampton, pp 135–144

    Google Scholar 

  26. Chu DN, Xie YM, Hira A, Steven GP (1997) On various aspects of evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 24(4):197–212

    Article  MATH  Google Scholar 

  27. Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  28. Özkal FM, Uysal H (2008) Determination of the best topology for deep beams with web opening by the evolutionary method. In: 8th international congress on advances in civil engineering, Gazi Mağusa, North Cyprus

    Google Scholar 

  29. Özkal FM, Uysal H (2016) A computational and experimental study for the optimum reinforcement layout design of an RC frame. Eng Comput 33(2):507–527

    Article  Google Scholar 

  30. Özkal FM (2006) Optimum design of beams by evolutionary structural optimization. M.Sc. thesis, Atatürk University, Turkey

    Google Scholar 

  31. Zheng Y, Wang Y, Lu X, Liao Z, Qu J (2020) Evolutionary topology optimization for mechanical metamaterials with auxetic property. Int J Mech Sci 179:105638

    Article  Google Scholar 

  32. Radman A, Huang XD, Xie YM (2013) Topological optimization for the design of microstructures of isotropic cellular materials. Eng Optim 45(11):1331–1348

    Article  MathSciNet  Google Scholar 

  33. Liu YS, Wang XJ, Wang L, Liu DL (2019) A modified leaky ReLU scheme (MLRS) for topology optimization with multiple materials. Appl Math Comput 352:188–204

    Article  MathSciNet  MATH  Google Scholar 

  34. Bakhtiari-Shahri M, Moeenfard H (2018) Topology optimization of fundamental compliant mechanisms using a novel asymmetric beam flexure. Int J Mech Sci 135:383–397

    Article  Google Scholar 

  35. Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  36. Chang KH, Tang PS (2001) Integration of design and manufacturing for structural shape optimization. Adv Eng Softw 32(7):555–567

    Article  MATH  Google Scholar 

  37. Bletzinger KU, Ramm E (2001) Structural optimization and form finding of light weight structures. Comput Struct 79(22–25):2053–2062

    Article  Google Scholar 

  38. Azad SK, Bybordiani M, Azad SK, Jawad FKJ (2018) Simultaneous size and geometry optimization of steel trusses under dynamic excitations. Struct Multidisc Optim 58:2545–2563

    Article  Google Scholar 

  39. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055

    Article  MathSciNet  Google Scholar 

  40. Wu Y, Li E, He ZC, Lin XY, Jiang HX (2020) Robust concurrent topology optimization of structure and its composite material considering uncertainty with imprecise probability. Comput Methods Appl Mech Eng 364:112927

    Article  MathSciNet  MATH  Google Scholar 

  41. Schmit LA (1960) Structural design by systematic synthesis. In: Proceedings of the 2nd ASCE conference on electronic computation. ASCE, Pittsburgh, pp 105–122

    Google Scholar 

  42. Chen A, Cai K, Zhao ZL, Zhou Y, Xia L, Xie YM (2020) Controlling the maximum first principal stress in topology optimization. Struct Multidisc Optim

    Google Scholar 

  43. Prager W, Shield RT (1967) A general theory of optimal plastic design. J Appl Mech 34(1):184–186

    Article  MATH  Google Scholar 

  44. Prager W, Rozvany GIN (1977) Optimization of structural geometry. In: Bednarek AR, Cesari L (eds) Dynamical systems proceedings of a University of Florida international symposium. Academic Press, New York, pp 265–293

    Google Scholar 

  45. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  46. Moreira JBD, de Souza Lisboa E, Rodrigues GC, Link FB, Casas WJP (2020) Multiscale topology optimization for frequency domain response with bi-material interpolation schemes. Optim Eng

    Google Scholar 

  47. Uysal H (2002) Duyarlılık analizi kullanılarak kabuk yapıların şekil optimizasyonu. Ph.D. thesis, Atatürk University, Turkey

    Google Scholar 

  48. Tang W, Tong L, Gu Y (2005) Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables. Int J Numer Methods Eng 62(13):1737–1762

    Article  MATH  Google Scholar 

  49. Querin OM, Steven GP, Xie YM (2000) Evolutionary structural optimisation using an additive algorithm. Finite Elem Anal Des 34(3–4):291–308

    Article  MATH  Google Scholar 

  50. Haftka RT, Gürdal Z (1992) Elements of structural optimization. Kluwer Academic Publishers, Netherlands

    Book  MATH  Google Scholar 

  51. Uysal H, Gul R, Uzman U (2007) Optimum shape design of shell structures. Eng Struct 29(1):80–87

    Article  Google Scholar 

  52. Li A, Liu C, Feng S (2018) Topology and thickness optimization of an indenter under stress and stiffness constraints. J Mech Sci Technol 32:211–222

    Article  Google Scholar 

  53. Shobeiri V (2016) Topology optimization using bi-direction at evolutionary structural optimization based on the element-free Galerkin method. Optim Eng 48:380–396

    Article  MathSciNet  Google Scholar 

  54. Lee SJ, Hinton E (2000) Dangers inherited in shells optimized with linear assumptions. Comput Struct 78(1):473–486

    Article  Google Scholar 

  55. Wang YJ, Wang ZP, Xia ZH, Poh LH (2018) Structural design optimization using isogeometric analysis: a comprehensive review. Comput Model Eng Sci 117(3):455–507

    Google Scholar 

  56. Grierson DE, Khajehpour S (2002) Conceptual design optimization of engineering structures. In: Burns SA (ed) Recent advances in optimal structural design. American Society of Civil Engineers, Reston, pp 81–95

    Google Scholar 

  57. Kim H, Querin OM, Steven GP (2002) On the development of structural optimisation and its relevance in engineering design. Des Stud 23(1):85–102

    Article  Google Scholar 

  58. Proos K (2002) Evolutionary structural optimisation as a robust and reliable design tool. Ph.D. thesis, The University of Sydney, Sydney, Australia

    Google Scholar 

  59. Barr AS, Sarin SC, Bishara AG (1989) Procedure for structural optimization. ACI Struct J 86(5):524–531

    Google Scholar 

  60. Michell AGM (1904) The limits of economy of material in frame-structures. Philos Mag 8(47):589–597

    Article  MATH  Google Scholar 

  61. Wang SY, Wang MY, Tai K (2006) An enhanced genetic algorithm for structural topology optimization. Int J Numer Methods Eng 65(1):18–44

    Article  MathSciNet  MATH  Google Scholar 

  62. Rozvany GIN (1998) Exact analytical solutions for some popular benchmark problems in topology optimization. Struct Optim 15(1):42–48

    Article  MATH  Google Scholar 

  63. Zhou K, Li J (2004) The exact weight of discretized Michell trusses for a central point load. Struct Multidiscip Optim 28(1):69–72

    Article  MathSciNet  Google Scholar 

  64. Das R, Jones R, Xie YM (2005) Design of structures for optimal static strength using ESO. Eng Fail Anal 12(1):61–80

    Article  Google Scholar 

  65. Fuchs MB, Shemesh NNY (2004) Density-based topological design of structures subjected to water pressure using a parametric loading surface. Struct Multidiscip Optim 28(1):11–19

    Article  Google Scholar 

  66. Steven GP, Li Q, Querin O (2001) Some thoughts on the physics and mechanics of the evolutionary structural optimization process. In: 3rd ASMO UK-ISSMO conference on engineering design optimization, Harrogate, North Yorkshire, UK

    Google Scholar 

  67. Li Q, Steven GP, Xie YM (2000) Evolutionary structural optimization for stress minimization problems by discrete thickness design. Comput Struct 78(6):769–780

    Article  Google Scholar 

  68. Hinton E, Sienz J (1995) Fully stressed topological design of structures using an evolutionary procedure. Eng Comput 12(3):229–244

    Article  MATH  Google Scholar 

  69. Pedersen P (2000) On optimal shapes in materials and structures. Struct Multidiscip Optim 19(3):169–182

    Article  Google Scholar 

  70. Steven GP, Li Q, Xie YM (2002) Multicriteria optimization that minimizes maximum stress and maximizes stiffness. Comput Struct 80(27–30):2433–2448

    Article  Google Scholar 

  71. Xie YM, Steven GP (1996) Evolutionary structural optimization for dynamic problems. Comput Struct 58(6):1067–1073

    Article  MATH  Google Scholar 

  72. Chu DN, Xie YM, Hira A, Steven GP (1995) An evolutionary procedure for structural optimization with displacement constraints. In: Proceedings of the 5th East Asia-Pacific conference on structural engineering and construction, Building for the 21st Century, vol 2, pp 1091–1096

    Google Scholar 

  73. Chu DN, Xie YM, Hira A, Steven GP (1996) Evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 21(4):239–251

    Article  MATH  Google Scholar 

  74. Manickarajah D, Xie YM, Steven GP (1995) A simple method for the optimization of columns, frames and plates against buckling. In: Kitipornchai S, Hancock GJ, Bradford MA (eds) Structural stability and design. AA Balkema Publishers, Rotterdam, p 180

    Google Scholar 

  75. Chu DN, Xie YM, Steven GP (1998) An evolutionary structural optimization method for sizing problems with discrete design variables. Comput Struct 68(4):419–431

    Article  MATH  Google Scholar 

  76. Li Q, Steven GP, Querin OM, Xie YM (1999) Evolutionary shape optimization for stress minimization. Mech Res Commun 26(6):657–664

    Article  MATH  Google Scholar 

  77. Kim H, Querin OM, Steven GP, Xie YM (2003) Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh. Struct Multidiscip Optim 24(6):441–448

    Article  Google Scholar 

  78. Abolbashari MH, Keshavarzmanesh S (2006) On various aspects of application of the evolutionary structural optimization method for 2D and 3D continuum structures. Finite Elem Anal Des 42(6):478–491

    Article  Google Scholar 

  79. Querin OM (1997) Evolutionary structural optimisation: stress based formulation and implementation. Ph.D. thesis, University of Sydney, Sydney, Australia

    Google Scholar 

  80. Liang QQ, Xie YM, Steven GP (1999) Optimal selection of topologies for the minimum-weight design of continuum structures with stress constraints. Proc Inst Mech Eng Part C J Mech Eng Sci 213(8):755–762

    Article  Google Scholar 

  81. Liang QQ, Xie YM, Steven GP (2000) Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary procedure. ACI Struct J 97(2):322–332

    Google Scholar 

  82. Liang QQ, Xie YM, Steven GP (2000) Optimal topology selection of continuum structures with displacement constraints. Comput Struct 77(6):635–644

    Article  Google Scholar 

  83. Liang QQ, Xie YM, Steven GP (2001) A performance index for topology and shape optimization of plate bending problems with displacement constraints. Struct Multidiscip Optim 21(5):393–399

    Article  Google Scholar 

  84. Guan H, Chen YJ, Loo YC (2001) Topology optimization of bridge type structures with stress and displacement constraints. Int J Comput Eng Sci 2(2):199–221

    Google Scholar 

  85. Liang QQ, Xie YM, Steven GP (2000) Optimal topology design of bracing systems for multistory steel frames. J Struct Eng 126(7):823–829

    Article  Google Scholar 

  86. Liang QQ, Steven GP (2002) A performance-based optimization method for topology design of continuum structures with mean compliance constraints. Comput Methods Appl Mech Eng 191(13–14):1471–1489

    Article  MATH  Google Scholar 

  87. Özkal FM, Uysal H (2012) A fully stressed design method to determine the optimum strut-and-tie model for beam-column connections. Int J Comput Methods 9(3):1250035

    Article  MathSciNet  MATH  Google Scholar 

  88. Özkal FM, Uysal H (2017) Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach. Comput Concr 15(5):589–597

    Article  Google Scholar 

  89. Xie YM, Steven GP (1994) Optimal design of multiple load case structures using an evolutionary procedure. Eng Comput 11:295–302

    Article  MATH  Google Scholar 

  90. Steven GP, Querin OM, Xie YM (1995) Multiple constraint environments for evolutionary structural optimization. In: Olhoff N, Rozvany GIN (eds) Proceedings of the first world congress on structural and multidisciplinary optimization. Goslar, Germany, pp 213–218

    Google Scholar 

  91. Li W, Li Q, Steven GP, Xie YM (2005) An evolutionary shape optimization for elastic contact problems subject to multiple load cases. Comput Methods Appl Mech Eng 194(30–33):3394–3415

    Article  MATH  Google Scholar 

  92. Young V, Querin OM, Steven GP, Xie YM (1999) 3D and multiple load case bi-directional evolutionary structural optimization (BESO). Struct Optim 18(2–3):183–192

    Article  Google Scholar 

  93. Özkal FM, Küçük M (2017) Güneş enerjisi panellerinin taşıyıcı sistem tasarımı için yapısal eniyileme yaklaşımı. In: 7th international symposium on steel structures, Gaziantep, Turkey, pp 270–280

    Google Scholar 

  94. Özkal FM, Küçük M (2018) A structural optimization approach for the load-bearing system design of solar panels. Eur Counc Civ Eng: E J 17:18–24

    Google Scholar 

  95. Simonetti HL, Almeida VS, das Neves FA, Greco M (2019) Multi-objective topology optimization using the boundary element method. Struct 19:84–95

    Article  Google Scholar 

  96. Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization. Academic Press Inc, Orlando

    MATH  Google Scholar 

  97. Koski J (1993) Multicriteria optimization in structural design: state of the art. Adv Des Autom 1:621–629

    Google Scholar 

  98. Stadler W, Dauer J (1993) Multicriteria optimization in engineering: a tutorial and survey. In: Kamat M (ed) Structural optimization: status and promise. AIAA Inc, Washington

    Google Scholar 

  99. Yang XY, Xie YM, Steven GP (2005) Evolutionary methods for topology optimisation of continuous structures with design dependent loads. Comput Struct 83(12–13):956–963

    Article  Google Scholar 

  100. Yang XY, Xie YM, Liu JS, Parks GT, Clarkson PJ (2003) Perimeter control in the bidirectional evolutionary optimization method. Struct Multidiscip Optim 24(6):430–440

    Google Scholar 

  101. Querin OM, Young V, Steven GP, Xie YM (2000) Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput Methods App Mech Eng 189(2):559–573

    Article  MATH  Google Scholar 

  102. Lencus A, Querin OM, Steven GP, Xie YM (1999) Modifications to the evolutionary structural optimisation (ESO) method to support configurational optimisation. In: 3rd world congress of structural and multidisciplinary optimization, New York, USA

    Google Scholar 

  103. Mueller KM, Burns SA (2001) Fully stressed frame structures unobtainable by conventional design methodology. Int J Numer Methods Eng 52(12):1397–1409

    Article  MATH  Google Scholar 

  104. Liu M, Burns SA (2003) Multiple fully stressed designs of steel frame structures with semi-rigid connections. Int J Numer Methods Eng 58(6):821–838

    Article  MATH  Google Scholar 

  105. Bakir PG, Boduroglu HM (2006) Nonlinear analysis of beam–column joints using softened truss model. Mech Res Commun 33(2):134–147

    Article  MATH  Google Scholar 

  106. MacGregor JG (1997) Reinforced concrete: mechanics and design. Prentice-Hall International Inc, New Jersey

    Google Scholar 

  107. Ahyat AB (2005) Analysis and design of hammerhead bridge pier using a strut and tie method. M.Sc. thesis, Malaysia Technology University, Malaysia

    Google Scholar 

  108. Cook WD, Mitchell D (1988) Studies of disturbed regions near discontinuities in reinforced concrete members. ACI Struct J 85(2):206–216

    Google Scholar 

  109. Altan M, Taşkın B (2006) A comparative study of the strut-and-tie model for shear critical structures. In: Proceedings of the 5th GAP engineering congress, vol 2. Şanlıurfa, Turkey, pp 889–896

    Google Scholar 

  110. Matraji M (1997) Design of reinforced concrete members by the strut-and-tie method. M.Sc. thesis, Middle East Technical University, Ankara, Turkey

    Google Scholar 

  111. Stojanović I, Brajević I, Stanimirović PS, Kazakovtsev LA, Zdravev Z (2017) Application of heuristic and metaheuristic algorithms in solving constrained Weber problem with feasible region bounded by arcs. Math Prob Eng 2017:8306732

    Article  MathSciNet  MATH  Google Scholar 

  112. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Metaheuristic algorithms in modeling and optimization. In: Gandomi AH, Yang XS, Talatahari S, Alavi AH (eds) Metaheuristic applications in structures and infrastructures. Elsevier, Massachusetts, pp 1–24

    Google Scholar 

  113. Martí R, Reinelt G (2011) The linear ordering problem: exact and heuristic methods in combinatorial optimization, vol 175. Springer, New York

    Book  MATH  Google Scholar 

  114. Yang X, Chien SF, Ting TO (2014) Computational intelligence and metaheuristic algorithms with applications. Sci World J 2014:425853

    Google Scholar 

  115. Park JY, Han SY (2013) Application of artificial bee colony algorithm to topology optimization for dynamic stiffness problems. Comput Math Appl 66(10):1879–1891

    Article  MathSciNet  MATH  Google Scholar 

  116. Yoo KS, Han SY (2013) A modified ant colony optimization algorithm for dyna topology optimization. Comput Struct 123:68–78

    Article  Google Scholar 

  117. Park JY, Han SY (2015) Topology optimization for nonlinear structural problems based on artificial bee colony algorithm. Int J Precis Eng Manuf 16(1):91–97

    Article  Google Scholar 

  118. Alberdi R, Murren P, Khandelwal K (2015) Connection topology optimization of steel moment frames using metaheuristic algorithms. Eng Struct 100:276–292

    Article  Google Scholar 

  119. Kim YH, Han SY (2017) Topological shape optimization scheme based on the artificial bee colony algorithm. Int J Precis Eng Manuf 18(10):1393–1401

    Article  Google Scholar 

  120. Lee SM, Han SY (2017) Topology optimization based on the harmony search method. J Mech Sci Technol 31:2875–2882

    Article  Google Scholar 

  121. Millan C, Millan E (2018) Topology optimization of two-dimensional beams: a comparative study. Contemp Eng Sci 11:5075–5080

    Article  Google Scholar 

  122. Di Cesare N, Domaszewski M (2019) A new hybrid topology optimization method based on I-PR-PSO and ESO. Application to continuum structural mechanics. Comput Struct 212:311–326

    Article  Google Scholar 

  123. Ahn HK, Han DS, Han SY (2019) A modified big bang–big crunch algorithm for structural topology optimization. Int J Precis Eng Manuf 20:2193–2203

    Article  Google Scholar 

  124. Jaafer AA, Al-Bazoon M, Dawood AO (2020) Structural topology design optimization using the binary bat algorithm. Appl Sci 10(4):1481

    Article  Google Scholar 

  125. Gao X, Ma H (2015) Topology optimization of continuum structures under buckling constraints. Comput Struct 157:142–152

    Article  Google Scholar 

  126. Lee K, Ahn K, Yoo J (2016) A novel P-norm correction method for lightweight topology optimization under maximum stress constraints. Comput Struct 171:18–30

    Article  Google Scholar 

  127. Jankovics D, Gohari H, Tayefeh M, Barari A (2018) Developing topology optimization with additive manufacturing constraints in ANSYS®. IFAC-PapersOnLine 51(11):1359–1364

    Article  Google Scholar 

  128. Abdi M, Ashcroft I, Wildman R (2018) Topology optimization of geometrically nonlinear structures using an evolutionary optimization method. Eng Optim 50(11):1850–1870

    Article  MathSciNet  Google Scholar 

  129. Šešok D, Belevičius R (2007) Use of genetic algorithms in topology optimization of truss structures. Mechanika 64(2):34–39

    Google Scholar 

  130. Kociecki M, Adeli H (2014) Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof structures with complex curvatures. Eng Appl Artif Intell 32:218–227

    Article  Google Scholar 

  131. Kaveh A, Mahdavi VR (2015) Colliding bodies optimization for size and topology optimization of truss structures. Struct Eng Mech 53(5):847–865

    Article  Google Scholar 

  132. Mortazavi A, Toğan V (2016) Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer. Struct Multidiscip Optim 54(4):715–736

    Article  MathSciNet  Google Scholar 

  133. Maheri MR, Askarian M, Shojaee S (2016) Size and topology optimization of trusses using hybrid genetic-particle swarm algorithms. Irani J Sci Technol Trans Civ Eng 40(3):179–193

    Article  Google Scholar 

  134. Assimi H, Jamali A, Nariman-Zadeh N (2017) Sizing and topology optimization of truss structures using genetic programming. Swarm Evol Comput 37:90–103

    Article  Google Scholar 

  135. Gholizadeh S, Ebadijalal M (2018) Performance based discrete topology optimization of steel braced frames by a new metaheuristic. Adv Eng Software 123:77–92

    Article  Google Scholar 

  136. Mortazavi A, Toğan V, Daloğlu A, Nuhoğlu A (2018) Comparison of two metaheuristic algorithms on sizing and topology optimization of trusses and mathematical functions. Gazi Univ J Sci 31(2):416–435

    Google Scholar 

  137. Degertekin SO, Lamberti L, Ugur IB (2018) Sizing, layout and topology design optimization of truss structures using the Jaya algorithm. Appl Soft Comp 70:903–928

    Article  Google Scholar 

  138. Tejani GG, Savsani VJ, Bureerat S, Patel VK, Savsani P (2019) Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithms. Eng Comput 35(2):499–517

    Article  Google Scholar 

  139. Mortazavi A (2020) A new fuzzy strategy for size and topology optimization of truss structures. App Soft Comput 93:106412

    Article  Google Scholar 

  140. Talatahari S, Azizi M (2020) Optimization of constrained mathematical and engineering design problems using chaos game optimization. Comput Ind Eng 145:106560

    Article  Google Scholar 

  141. Talatahari S, Motamedi P, Farahmand Azar B, Azizi M (2019) Tribe–charged system search for parameter configuration of nonlinear systems with large search domains. Eng Optim

    Google Scholar 

  142. Talatahari S, Azizi M (2020) Optimum design of building structures using tribe-interior search algorithm. Struct 28:1616–1633

    Article  Google Scholar 

  143. Talatahari S, Azizi M (2020) Optimal design of real-size building structures using quantum-behaved developed swarm optimizer. Struct Des Tall Special Build 29(11):e1747

    Article  Google Scholar 

  144. Guan H, Chen YJ, Loo YC, Xie YM, Steven GP (2003) Bridge topology optimisation with stress, displacement and frequency constraints. Comput Struct 3:131–145

    Article  Google Scholar 

  145. Rong JH, Xie YM, Yang XY, Liang QQ (2000) Topology optimization of structures under dynamic response constraints. J Sound Vib 234(2):177–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Mehmet Özkal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Özkal, F.M. (2021). Evolutionary Structural Optimization—A Trial Review. In: Carbas, S., Toktas, A., Ustun, D. (eds) Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-33-6773-9_13

Download citation

Publish with us

Policies and ethics