Skip to main content

An Adaptive Deep Learning Model to Forecast Crimes

  • Conference paper
  • First Online:
Proceedings of Integrated Intelligence Enable Networks and Computing

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Assessing crime is an important process as crime is on the rise these days. Assessing cybercrime can be a daunting task. It can be challenging to collect existing data and work on new techniques. In cybercrime, direct real-time assessment is obligatory. However, it is difficult to pinpoint when the subsequent offense happens. Information on past offense is limited that where and when it happened. The proposal aptly refers to the recent crime statistics in this work. The datasets contain representing spatial and temporary residual networks to analyze copy crime for hours. In terms of accuracy, comparisons with these experiments and several existing estimation methods show fewer performances than the proposed adaptive deep learning-based crime prediction (ADLCP) model. Finally, to solve shortcomings in existing models for expansion in the actual prediction of crimes, the proposal introduces a novel strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Balakrishna, V.K. Solanki, V.K. Gunjan, M. Thirumaran, A survey on semantic approaches for IoT data integration in smart cities, in ICICCT 2019—System Reliability, Quality Control, Safety, Maintenance and Management, ICICCT 2019. ed. by V. Gunjan, D.V. Garcia, M. Cardona, V. Solanki, K. Sunitha (Springer, Singapore, 2019)

    Google Scholar 

  2. S. Balakrishna, M. Thirumaran, V. Solanki, Machine learning based improved Gaussian mixture model for IoT real-time data analysis. Ingeniería Solidaria 16(1) (2020). https://doi.org/https://doi.org/10.16925/2357-6014.2020.01.02.

  3. D.E. Brown, S. Hagen, Data association methods with applications to law enforcement. Decis. Support Syst. 34(4), 369378 (2003)

    Article  Google Scholar 

  4. A.L. Buczak, C.M. Giord, Fuzzy association rule mining for community crime pattern discovery, in ACM SIGKDD Workshop on Intelligence and Security Informatics (ACM, 2010), (p. 2)

    Google Scholar 

  5. S. Chainey, L. Tompson, S. Uhlig, The Utility of Hotspot Mapping for Predicting Spatial Patterns (2008)

    Google Scholar 

  6. J.J. Corcoran, I.D. Wilson, J.A. Ware, Predicting the geo-temporal variations of crime and disorder. Int. J. Forecast. 19(4), 623634 (2003)

    Article  Google Scholar 

  7. M.H. Dunham, Data Mining: Introductory and Advanced Topics (Pearson Education, India, 2006).

    Google Scholar 

  8. J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques (Elsevier, Amsterdam, 2011).

    MATH  Google Scholar 

  9. https://data.world/datasets/cybercrime

  10. D.J. Icove, Automated crime proling. FBI Law Enforcement Bull. 55, 27 (1986)

    Google Scholar 

  11. S. Lin, D.E. Brown, An outlier-based data association method for linking criminal incidents. Decis. Support Syst. 41(3), 604615 (2006)

    Article  Google Scholar 

  12. H.W. Kang, H.-B. Kang, Prediction of crime occurrence from multi-modal data using deep learning. PLoS ONE 12, e0176244 (2017). https://doi.org/10.1371/journal.pone.0176244

    Article  Google Scholar 

  13. D. Osborne, S. Wernicke, Introduction to Crime Analysis: Basic Resources for Criminal Justice Practice (Psychology Press, New York, 2003).

    Google Scholar 

  14. K. Ozkan, Managing data mining at digital crime investigation. Forensic Sci. Int. 146, S37–S38 (2004)

    Article  Google Scholar 

  15. D.J. Paulsen, S. Bair, D. Helms, Tactical Crime Analysis: Research and Investigation (CRC Press, Boca Raton, 2009).

    Book  Google Scholar 

  16. J.H. Ratclie, A temporal constraint theory to explain opportunity-based spatial offending patterns. J. Res. Crime Delinquency 43(3), 261291 (2006)

    Google Scholar 

  17. S. Ranga Swamy, P.S.V. Srinivasa Rao, J.V.N. Raju, M. Nagavamsi, Dimensionality reduction using machine learning and big data technologies. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 9(02), 1740–1745.3 (2019)

    Google Scholar 

  18. M.B. Short, M.R. Dorsogna, V.B. Pasour, G.E. Tita, P.J. Brantingham, A.L. Bertozzi et al., A statistical model of criminal behavior. Math. Models Methods Appl. Sci. 18(supp01), 12491267 (2008)

    Article  MathSciNet  Google Scholar 

  19. P. Stalidis, T. Semertzidis, P. Daras, Examining Deep Learning Architectures for Crime Classification and Prediction. arXiv preprint arXiv:1812.00602 (2018)

  20. J.L. Toole, N. Eagle, J.B. Plotkin, Spatiotemporal correlations in criminal oense records. ACM Trans. Intell. Syst. Technol. (TIST) 2(4), 38 (2011)

    Google Scholar 

  21. B. Wang et al., Deep learning for real-time crime forecasting and its ternarization. Chin. Ann. Math. Ser. B. 40(6), 949–966 (2019)

    Article  MathSciNet  Google Scholar 

  22. T. Wang, C. Rudin, D. Wagner, R. Sevieri, Learning to detect patterns of crime, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases. (Springer, Berlin, 2013), pp. 515–530

    Google Scholar 

  23. S. Osher, B. Wang, P. Yin, et al., Laplacian Smoothing Gradient Descent (2018). arXiv:1806.06317.

  24. Y. Sowjanya Kumari, M. Srinivasa Rao, R. Swamy Sirisati, Machine Learning based diagnosis of diabetic retinopathy using digital fundus images with CLAHE along FPGA methodology. Int. J. Adv. Sci. Technol. 29(03), 9497–9508 (2020)

    Google Scholar 

  25. Y. Zhang, T. Cheng, Graph deep learning model for network-based predictive hotspot mapping of sparse spatio-temporal events. Comput. Environ. Urban Syst. 79, 101403 (2020)

    Article  Google Scholar 

  26. Z.S. Zubi, Using some web content mining techniques for Arabic text classification, in Proceedings of the 8th WSEAS International Conference on Data Networks, Communications, Computers. Stevens Point (2009)

    Google Scholar 

  27. J. Eck, S. Chainey, J. Cameron, R. Wilson, Mapping Crime: Understanding Hotspots (2005), pp. 1–71

    Google Scholar 

  28. G.O. Mohler, M.B. Short, P.J. Brantingham, F.P. Schoenberg, G.E. Tita, Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 106(493), 100–108 (2011)

    Article  MathSciNet  Google Scholar 

  29. A. Tumasjan, T.O. Sprenger, P.G. Sandner, I.M. Welpe, Predicting elections with twitter: what 140 characters reveal about political sentiment. ICWSM 10(1), 178185 (2010)

    Google Scholar 

  30. J. Bollen, H. Mao, X. Zeng, Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 18 (2011)

    Article  Google Scholar 

  31. C. Police, Chicago Data Portal. https ://data.cityo fchic ago.org/

    Google Scholar 

  32. S. Shukla, et al., A multivariate regression model for identifying, analyzing and predicting crimes. Wireless Pers. Commun. (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Srinivasa Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, C.S., Swamy, S.R., Navakanth, I., Raju, J.V.N. (2021). An Adaptive Deep Learning Model to Forecast Crimes. In: Singh Mer, K.K., Semwal, V.B., Bijalwan, V., Crespo, R.G. (eds) Proceedings of Integrated Intelligence Enable Networks and Computing. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-6307-6_47

Download citation

Publish with us

Policies and ethics