Skip to main content

Digital Twins Based LCA and ISO 20140 for Smart and Sustainable Manufacturing Systems

  • Chapter
  • First Online:
Sustainable Intelligent Systems

Part of the book series: Advances in Sustainability Science and Technology ((ASST))

Abstract

Currently, several facilities around the world, as part of government’s sustainable development strategies, are turning to the development of smart value chains that can leverage efficiently all of countries available and local resources. Smart factories vision embracing the fourth industrial revolution of manufacturing plants introduced a completely renewed industrial organization based on collaboration between human intelligence and capabilities and machines intelligence and computing capacities, manufacturing plants horizontal and vertical integration, and with particular interest for our paper end-to-end engineering. This collaborative endeavour has been translated in the field by a set of technologies for instance advanced simulation tools through digital twins. The use of these new resources and productivity enhancement has not been without consequences on natural ecosystems, which are increasingly subject to industrial competitiveness pressure. To counter the adverse environmental effects of industrial and technological growth, some manufacturers are developing simulation-based life cycle assessment approaches. Over the last few years, several research communities have explored the potential of simulation-based LCA method for the optimization of the environmental impact of production systems through the application of advanced artificial intelligence algorithms. However, only a limited number of these attempts have seen their practical implementation. Currently, digital twins’ technologies are rapidly expanding due to the advantages they offer for real-time simulation, multidimensional replication of industrial systems and end-to-end engineering. Through this work, we propose a generic solution based on digital twins’ technologies and ISO 20140 for real-time life cycle assessment and manufacturing systems sustainable optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W.S. Alaloul, M.S. Liew, N.A.W.A. Zawawi,I.B. Kennedy, Industrial revolution 4.0 in the construction industry: challenges and opportunities for stakeholders. Ain Shams Eng. J. S2090447919301157 (2019). https://doi.org/10.1016/j.asej.2019.08.010

  2. W. El Hilali, A. El Manouar, Smart Companies: How to Reach Sustainability During a Digital Transformation. in Proceedings of the 3rd International Conference on Smart City Applications–SCA ‘18. (ACM Press, Tetouan, Morocco, 2018) pp. 1–6

    Google Scholar 

  3. E. Conrad, L.F. Cassar, Decoupling economic growth and environmental degradation: reviewing progress to date in the small island state of malta. Sustainability. 6, 6729–6750 (2014). https://doi.org/10.3390/su6106729

    Article  Google Scholar 

  4. P. Tapio, Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 12, 137–151 (2005). https://doi.org/10.1016/j.tranpol.2005.01.001

    Article  Google Scholar 

  5. E. Sanyé-Mengual, M. Secchi, S. Corrado, A. Beylot, S. Sala, Assessing the decoupling of economic growth from environmental impacts in the European Union: A consumption-based approach. J. Cleaner Prod. 236, 117535 (2019). https://doi.org/10.1016/j.jclepro.2019.07.010

    Article  Google Scholar 

  6. S. Stavropoulos, R. Wall, Y. Xu, Environmental regulations and industrial competitiveness: evidence from China. Appl. Econ. 50, 1378–1394 (2018). https://doi.org/10.1080/00036846.2017.1363858

    Article  Google Scholar 

  7. D.C.A. Pigosso, A. Schmiegelow, M.M. Andersen, Measuring the readiness of SMEs for eco-innovation and industrial symbiosis: development of a screening tool. Sustainability. 10, 2861 (2018). https://doi.org/10.3390/su10082861

    Article  Google Scholar 

  8. F.D. Pero, M. Delogu, M. Pierini, Life Cycle Assessment in the automotive sector: a comparative case study of Internal Combustion Engine (ICE) and electric car. Procedia Struct. Integrity. 12, 521–537 (2018). https://doi.org/10.1016/j.prostr.2018.11.066

    Article  Google Scholar 

  9. I. Djekic, M. Pojić, A. Tonda, P. Putnik, D. Bursać Kovačević, A. Režek-Jambrak, I. Tomasevic, scientific challenges in performing life-cycle assessment in the food supply chain. Foods. 8 (2019). https://doi.org/10.3390/foods8080301

  10. C. Cimino, E. Negri, L. Fumagalli, Review of digital twin applications in manufacturing. Comput. Ind. 113, 103130 (2019). https://doi.org/10.1016/j.compind.2019.103130

    Article  Google Scholar 

  11. M. Ghita, B. Siham, M. Hicham, Digital twins development architectures and deployment technologies: moroccan use case. Int. J. Adv. Comput. Sci. Appl. (IJACSA). 11 (2020). https://doi.org/10.14569/IJACSA.2020.0110260

  12. B. Mota, A. Carvalho, M.I. Gomes, A. Barbosa-Póvoa, Design and Planning Supply Chains with Beneficial Societal Goals. in Computer Aided Chemical Engineering (Elsevier 2019), pp. 439–444

    Google Scholar 

  13. Sustainable Development Goals, https://www.undp.org/content/undp/en/home/sustainable-development-goals.html

  14. A. Moldavska, T. Welo, The concept of sustainable manufacturing and its definitions: A content-analysis based literature review. J. Cleaner Prod. 166, 744–755 (2017). https://doi.org/10.1016/j.jclepro.2017.08.006

    Article  Google Scholar 

  15. P. Rosa, S. Sassanelli, A. Urbinati, D. Chiaroni, S. Terzi, Assessing relations between Circular Economy and Industry 4.0: a systematic literature review. Int. J. Prod. Res. 58, 1662–1687 (2020). https://doi.org/10.1080/00207543.2019.1680896

  16. Global Reporting Initiative, https://www.globalreporting.org/Pages/default.aspx

  17. W.E. Rees, Ecological Footprints and Appropriated Carrying Capacity: What Urban Economics Leaves Out: Environment and Urbanization (2016). https://doi.org/10.1177/095624789200400212

  18. J. Vogler, H.R. Stephan, The European Union in global environmental governance: Leadership in the making? Int. Environ. Agreements. 7, 389–413 (2007). https://doi.org/10.1007/s10784-007-9051-5

    Article  Google Scholar 

  19. H. Ritchie, M. Roser, CO2 and Greenhouse Gas Emissions. Our World in Data (2017)

    Google Scholar 

  20. Worldometer—real time world statistics, https://www.worldometers.info/

  21. Climate Change: Vital Signs of the Planet, https://climate.nasa.gov/

  22. 14:00–17:00: ISO 20140–3:2019, https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/46/64674.html

  23. M.A. Pisching, M.A.O. Pessoa, F. Junqueira, D.J. dos Santos Filho, P.E. Miyagi, An architecture based on RAMI 4.0 to discover equipment to process operations required by products. Comput. Ind. Eng. 125, 574–591 (2018). https://doi.org/10.1016/j.cie.2017.12.029

  24. M. Ghazivakili, C. Demartini, C. Zunino, Industrial Data-Collector by Enabling OPC-UA standard for Industry 4.0. in 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS) (IEEE, Imperia, Italy, 2018), pp. 1–8

    Google Scholar 

  25. C. Toro, A. Seif, H. Akhtar, Modeling and connecting asset administrative shells for mini factories. Cybernet. Syst. 51, 232–245 (2020). https://doi.org/10.1080/01969722.2019.1705554

    Article  Google Scholar 

  26. robert.lipman@nist.gov: Enabling the Digital Thread for Smart Manufacturing, https://www.nist.gov/el/systems-integration-division-73400/enabling-digital-thread-smart-manufacturing

  27. A. Semmar, N. Machkour, R. Boutaleb, H. Bnouachir, H. Medromi, M. Chergui, L. Deshayes, M. Elouazguiti, F. Moutaouakkil, M. Zegrari, Modeling Input Data of Control System of a Mining Production Unit Based on ISA-95 Approach, in Smart Applications and Data Analysis. ed. by M. Hamlich, L. Bellatreche, A. Mondal, C. Ordonez (Springer International Publishing, Cham, 2020), pp. 47–55

    Chapter  Google Scholar 

  28. Harbal, A.: La question environnementale au Maroc (2017)

    Google Scholar 

  29. SDD—GRI Database, https://database.globalreporting.org/organizations/7288/

  30. Livre Blanc : La Transformation Digitale Au Maroc. AUSIM MAROC, https://www.ausimaroc.com/livre-blanc-la-transformation-digitale-au-maroc/

  31. CHIMIE-PARACHIMIE | Ministère de l’Industrie, du Commerce et de l’Économie Verte et Numérique, https://www.mcinet.gov.ma/fr/content/chimie-parachimie

  32. Goal 6: Clean Water and Sanitation–SDG Tracker, https://sdg-tracker.org/water-and-sanitation

  33. SDG Indicators, https://unstats.un.org/sdgs/indicators/database/

  34. E. Nieuwlaar, Life Cycle Assessment and Energy Systems, in Encyclopedia of Energy. ed. by C.J. Cleveland (Elsevier, New York, 2004), pp. 647–654

    Chapter  Google Scholar 

  35. G. Mondello, R. Salomone, Chapter 10—Assessing Green Processes Through Life Cycle Assessment and Other LCA-Related Methods. in Studies in Surface Science and Catalysis, ed by A. Basile, G. Centi, M.D. Falco, G. Laquaniello A. Basile, G. Centi, M.D. Falco, G. Laquaniello (Elsevier 2019), pp. 159–185

    Google Scholar 

  36. 14:00–17:00: ISO 14040:2006, https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/03/74/37456.html

  37. R. Basosi, M. Cellura, S. Longo, M.L. Parisi, (eds.) Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies: The Italian Experience (Springer International Publishing, 2019)

    Google Scholar 

  38. Y. Liu, A. Syberfeldt, M. Strand, Review of simulation-based life cycle assessment in manufacturing industry. Prod. Manuf. Res. 7, 490–502 (2019). https://doi.org/10.1080/21693277.2019.1669505

    Article  Google Scholar 

  39. S. Suh, G. Huppes, Methods in the Life Cycle Inventory of a Product, in Handbook of Input-Output Economics in Industrial Ecology. ed. by S. Suh (Springer, Netherlands, Dordrecht, 2009), pp. 263–282

    Chapter  Google Scholar 

  40. S. Asem-Hiablie, T. Battagliese, K.R. Stackhouse-Lawson, C. Alan Rotz, A life cycle assessment of the environmental impacts of a beef system in the USA. Int. J. Life Cycle Assess. 24, 441–455 (2019). https://doi.org/10.1007/s11367-018-1464-6

    Article  Google Scholar 

  41. F. Torabi, P. Ahmadi, Battery Technologies. in Simulation of Battery Systems (Elsevier, 2020), pp. 1–54

    Google Scholar 

  42. M.L. Brusseau, Chapter 32 - Sustainable Development and Other Solutions to Pollution and Global Change. in Environmental and Pollution Science, ed. by M.L. Brusseau, I.L., Pepper, C.P. Gerba, Third Edition. (Academic Press, 2019), pp. 585–603

    Google Scholar 

  43. C.C. Wang, S.M.E. Sepasgozar, M. Wang, J. Sun, X. Ning, Green performance evaluation system for energy-efficiency-based planning for construction site layout. Energies. 12, 4620 (2019). https://doi.org/10.3390/en12244620

    Article  Google Scholar 

  44. D. Husain, R. Prakash, Ecological footprint reduction of built envelope in India. J. Building Eng. 21, 278–286 (2019). https://doi.org/10.1016/j.jobe.2018.10.018

    Article  Google Scholar 

  45. openLCA Nexus: The source for LCA data sets, https://nexus.openlca.org/

  46. L. Hermann, F. Kraus, R. Hermann, Phosphorus Processing—potentials for higher efficiency. Sustainability. 10, 1482 (2018). https://doi.org/10.3390/su10051482

    Article  Google Scholar 

  47. C.G. Machado, M.P. Winroth, E.H.D.R. Silva da, Sustainable manufacturing in Industry 4.0: an emerging research agenda. Int. J. Prod. Res. 58, 1462–1484 (2020). https://doi.org/10.1080/00207543.2019.1652777

  48. F. Guarino, M. Cellura, M. Traverso, Costructal law, exergy analysis and life cycle energy sustainability assessment: an expanded framework applied to a boiler. Int. J. Life Cycle Assess. (2020). https://doi.org/10.1007/s11367-020-01779-9

    Article  Google Scholar 

  49. Life Cycle Assessment in the minerals industry, Current practice, harmonization efforts, and potential improvement through the integration with process simulation. J. Cleaner Prod. 232, 174–192 (2019). https://doi.org/10.1016/j.jclepro.2019.05.318

    Article  Google Scholar 

  50. P. Stasinopoulos, N. Shiwakoti, M. Beining, Use-stage life cycle greenhouse gas emissions of the transition to an autonomous vehicle fleet: a system dynamics approach. J. Cleaner Prod. 123447 (2020). https://doi.org/10.1016/j.jclepro.2020.123447

  51. L.F. Morales-Mendoza, C. Azzaro-Pantel, Bridging LCA data gaps by use of process simulation for energy generation. Clean Techn. Environ. Policy. 19, 1535–1546 (2017). https://doi.org/10.1007/s10098-017-1349-6

    Article  Google Scholar 

  52. C. Brondi, E. Carpanzano, A modular framework for the LCA-based simulation of production systems. CIRP J. Manuf. Sci. Technol. 4, 305–312 (2011). https://doi.org/10.1016/j.cirpj.2011.06.006

    Article  Google Scholar 

  53. G.M. Zanghelini, E. Cherubini, S.R. Soares, How Multi-criteria decision analysis (MCDA) is aiding life cycle assessment (LCA) in results interpretation. J. Cleaner Prod. 172, 609–622 (2018). https://doi.org/10.1016/j.jclepro.2017.10.230

    Article  Google Scholar 

  54. M.J. Hermoso-Orzáez, J.A. Lozano-Miralles, R. Lopez-Garcia, P. Brito, Environmental criteria for assessing the competitiveness of public tenders with the replacement of large-scale LEDs in the outdoor lighting of cities as a key element for sustainable development: case study applied with Promethee methodology. Sustainability. 11, 5982 (2019). https://doi.org/10.3390/su11215982

    Article  Google Scholar 

  55. M. Budzinski, M. Sisca, D. Thrän, Consequential LCA and LCC using linear programming: an illustrative example of biorefineries. Int. J. Life Cycle Assess. 24, 2191–2205 (2019). https://doi.org/10.1007/s11367-019-01650-6

    Article  Google Scholar 

  56. K. Allacker, V. Castellani, G. Baldinelli, F. Bianchi, C. Baldassarri, S. Sala, Energy simulation and LCA for macro-scale analysis of eco-innovations in the housing stock. Int. J. Life Cycle Assess. 24, 989–1008 (2019). https://doi.org/10.1007/s11367-018-1548-3

    Article  Google Scholar 

  57. S. Kim, G.-H. Kim, Y.-D. Lee, Sustainability life cycle cost analysis of roof waterproofing methods considering LCCO2. Sustainability. 6, 158–174 (2014). https://doi.org/10.3390/su6010158

    Article  Google Scholar 

  58. B. Löfgren, A.-M. Tillman, Relating manufacturing system configuration to life-cycle environmental performance: discrete-event simulation supplemented with LCA. J. Cleaner Prod. 19, 2015–2024 (2011). https://doi.org/10.1016/j.jclepro.2011.07.014

    Article  Google Scholar 

  59. R. Geyer, D.M. Stoms, J.P. Lindner, F.W. Davis, B. Wittstock, Coupling GIS and LCA for biodiversity assessments of land use. Int. J. Life Cycle Assess. 15, 454–467 (2010). https://doi.org/10.1007/s11367-010-0170-9

    Article  Google Scholar 

  60. N. Perry, J. Garcia, Sustainable Design of Complex Systems, Products and Services with User Integration into Design, in Designing Sustainable Technologies, Products and Policies: From Science to Innovation. ed. by E. Benetto, K. Gericke, M. Guiton (Springer International Publishing, Cham, 2018), pp. 365–369

    Chapter  Google Scholar 

  61. S. Payen, C. Basset-Mens, F. Colin, P. Roignant, Inventory of field water flows for agri-food LCA: critical review and recommendations of modelling options. Int. J. Life Cycle Assess. 23, 1331–1350 (2018). https://doi.org/10.1007/s11367-017-1353-4

    Article  Google Scholar 

  62. C.-Y. Baek, K. Tahara, K.-H. Park, Parameter uncertainty analysis of the life cycle inventory database: application to greenhouse gas emissions from brown rice production in IDEA. Sustainability. 10, 922 (2018). https://doi.org/10.3390/su10040922

    Article  Google Scholar 

  63. M. Ziyadi, I.L. Al-Qadi, Model uncertainty analysis using data analytics for life-cycle assessment (LCA) applications. Int. J. Life Cycle Assess. 24, 945–959 (2019). https://doi.org/10.1007/s11367-018-1528-7

    Article  Google Scholar 

  64. K. Tokimatsu, L. Tang, R. Yasuoka, R. Ii, N. Itsubo, M. Nishio, Toward more comprehensive environmental impact assessments: interlinked global models of LCIA and IAM applicable to this century. Int. J. Life Cycle Assess. (2020). https://doi.org/10.1007/s11367-020-01750-8

    Article  Google Scholar 

  65. M.R. Giraldi-Díaz, L. De Medina-Salas, E. Castillo-González, R. León-Lira, Environmental impact associated with the supply chain and production of grounding and roasting coffee through life cycle analysis. Sustainability. 10, 4598 (2018). https://doi.org/10.3390/su10124598

    Article  Google Scholar 

  66. P. Kerdlap, J.S.C. Low, S. Ramakrishna, Life cycle environmental and economic assessment of industrial symbiosis networks: a review of the past decade of models and computational methods through a multi-level analysis lens. Int. J. Life Cycle Assess. (2020). https://doi.org/10.1007/s11367-020-01792-y

    Article  Google Scholar 

  67. T. Schaubroeck, Both completing system boundaries and realistic modeling of the economy are of interest for life cycle assessment—a reply to “Moving from completing system boundaries to more realistic modeling of the economy in life cycle assessment” by Yang and Heijungs (2018). Int. J. Life Cycle Assess. 24, 219–222 (2019). https://doi.org/10.1007/s11367-018-1546-5

    Article  Google Scholar 

  68. Y. Leroy, D. Froelich, Qualitative and quantitative approaches dealing with uncertainty in life cycle assessment (LCA) of complex systems: towards a selective integration of uncertainty according to LCA objectives. Int. J. Design Eng. 3, 151–171 (2010). https://doi.org/10.1504/IJDE.2010.034862

    Article  Google Scholar 

  69. V. Bellon-Maurel, M.D. Short, P. Roux, M. Schulz, G.M. Peters, Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies—part I: concepts and technical basis. J. Cleaner Prod. 69, 60–66 (2014). https://doi.org/10.1016/j.jclepro.2014.01.079

    Article  Google Scholar 

  70. I.T. Herrmann, A. Jørgensen, S. Bruun, M.Z. Hauschild, Potential for optimized production and use of rapeseed biodiesel. Based on a comprehensive real-time LCA case study in Denmark with multiple pathways. Int. J. Life Cycle Assess. 18, 418–430 (2013). https://doi.org/10.1007/s11367-012-0486-8

  71. V.E. de Oliveira Gomes, D.J. De Barba, J. de Oliveira Gomes, K.-H. Grote, C. Beyer, Sustainable Layout Planning Requirements by Integration of Discrete Event Simulation Analysis (DES) with Life Cycle Assessment (LCA). in Advances in Production Management Systems. Competitive Manufacturing for Innovative Products and Services, ed. by C. Emmanouilidis, M. Taisch, D. Kiritsis (Springer, Berlin, Heidelberg, 2013) pp. 232–239

    Google Scholar 

  72. T. Henriksen, J.W. Levis, M.A. Barlaz, A. Damgaard, Approaches to fill data gaps and evaluate process completeness in LCA—perspectives from solid waste management systems. Int. J. Life Cycle Assess. 24, 1587–1601 (2019). https://doi.org/10.1007/s11367-019-01592-z

    Article  Google Scholar 

  73. S. Schwarzinger, D.N. Bird, T.M. Skjølsvold, Identifying consumer lifestyles through their energy impacts: transforming social science data into policy-relevant group-level knowledge. Sustainability. 11, 6162 (2019). https://doi.org/10.3390/su11216162

    Article  Google Scholar 

  74. J. Pohl, L.M. Hilty, M. Finkbeiner, How LCA contributes to the environmental assessment of higher order effects of ICT application: A review of different approaches. J. Cleaner Prod. 219, 698–712 (2019). https://doi.org/10.1016/j.jclepro.2019.02.018

    Article  Google Scholar 

  75. A.N. Azimi, S.M.R. Dente, S. Hashimoto, Social Life-cycle assessment of household waste management system in Kabul City. Sustainability. 12, 3217 (2020). https://doi.org/10.3390/su12083217

    Article  Google Scholar 

  76. Z. Jin, J. Kim, C. Hyun, S. Han, Development of a model for predicting probabilistic life-cycle cost for the early stage of public-office construction. Sustainability. 11, 3828 (2019). https://doi.org/10.3390/su11143828

    Article  Google Scholar 

  77. M. Zimek, A. Schober, C. Mair, R.J. Baumgartner, T. Stern, M. Füllsack, The third wave of LCA as the “decade of consolidation.” Sustainability. 11, 3283 (2019). https://doi.org/10.3390/su11123283

    Article  Google Scholar 

  78. A.M. Herrera Almanza, B. Corona, Using social life cycle assessment to analyze the contribution of products to the sustainable development goals: a case study in the textile sector. Int. J. Life Cycle Assess. (2020). https://doi.org/10.1007/s11367-020-01789-7

    Article  Google Scholar 

  79. S. O’Keeffe, D. Thrän, Energy crops in regional biogas systems: an integrative spatial LCA to assess the influence of crop mix and location on cultivation GHG emissions. Sustainability. 12, 237 (2020). https://doi.org/10.3390/su12010237

    Article  Google Scholar 

  80. R. Kc, M. Aalto, O.-J. Korpinen, T. Ranta, S. Proskurina, Lifecycle assessment of biomass supply chain with the assistance of agent-based modelling. Sustainability. 12, 1964 (2020). https://doi.org/10.3390/su12051964

    Article  Google Scholar 

  81. H.E. Otto, K.G. Mueller, F. Kimura, Efficient information visualization in LCA. Int. J. LCA. 8, 183 (2003). https://doi.org/10.1007/BF02978468

    Article  Google Scholar 

  82. H.E. Otto, K.G. Mueller, F. Kimura, Efficient information visualization in LCA: Application and practice. Int. J. LCA. 9, 2 (2004). https://doi.org/10.1007/BF02978531

    Article  Google Scholar 

  83. openLCA Nexus: The source for LCA data sets, https://nexus.openlca.org/databases

  84. G. Sonnemann, B. Vigon, C. Broadbent, M.A. Curran, M. Finkbeiner, R. Frischknecht, A. Inaba, A. Schanssema, M. Stevenson, C.M.L. Ugaya, H. Wang, M.-A. Wolf, S. Valdivia, Process on “global guidance for LCA databases.” Int. J. Life Cycle Assess. 16, 95–97 (2011). https://doi.org/10.1007/s11367-010-0243-9

    Article  Google Scholar 

  85. J. Liu, Z. Huang, X. Wang, Economic and environmental assessment of carbon emissions from demolition waste based on LCA and LCC. Sustainability. 12, 6683 (2020). https://doi.org/10.3390/su12166683

    Article  Google Scholar 

  86. M.L. Kambanou, Life cycle costing: understanding how it is practised and its relationship to life cycle management—a case study. Sustainability. 12, 3252 (2020). https://doi.org/10.3390/su12083252

    Article  Google Scholar 

  87. R. Baum, J. Bieńkowski, Eco-efficiency in measuring the sustainable production of agricultural crops. Sustainability. 12, 1418 (2020). https://doi.org/10.3390/su12041418

    Article  Google Scholar 

  88. J. Sanfélix, F. Mathieux, C. de la Rúa, M.-A. Wolf, K. Chomkhamsri, The enhanced lca resources directory: a tool aimed at improving life cycle thinking practices. Int. J. Life Cycle Assess. 18, 273–277 (2013). https://doi.org/10.1007/s11367-012-0468-x

    Article  Google Scholar 

  89. A. Siebert, A. Bezama, S. O’Keeffe, D. Thrän, Social life cycle assessment indices and indicators to monitor the social implications of wood-based products. J. Cleaner Prod. 172, 4074–4084 (2018). https://doi.org/10.1016/j.jclepro.2017.02.146

    Article  Google Scholar 

  90. L. Jarosch, W. Zeug, A. Bezama, M. Finkbeiner, D. Thrän, A regional socio-economic life cycle assessment of a bioeconomy value chain. Sustainability. 12, 1259 (2020). https://doi.org/10.3390/su12031259

    Article  Google Scholar 

  91. J. Veselka, M. Nehasilová, K. Dvořáková, P. Ryklová, M. Volf, J. Růžička, A. Lupíšek, Recommendations for developing a BIM for the purpose of LCA in green building certifications. Sustainability. 12, 6151 (2020). https://doi.org/10.3390/su12156151

    Article  Google Scholar 

  92. J. Sherry, J. Koester, Life cycle assessment of aquaculture stewardship council certified atlantic Salmon (Salmo salar). Sustainability. 12, 6079 (2020). https://doi.org/10.3390/su12156079

    Article  Google Scholar 

  93. L.F. Morales-Mendoza, C. Azzaro-Pantel, J.-P. Belaud, A. Ouattara, Coupling life cycle assessment with process simulation for ecodesign of chemical processes. Environ. Progress Sustainable Energy. 37, 777–796 (2018). https://doi.org/10.1002/ep.12723

    Article  Google Scholar 

  94. R. Gaha, A. Benamara, B. Yannou, Proposition of Eco-Feature: A New CAD/PLM Data Model for an LCA Tool. in CMSM 2017: The Seventh International Congress Design and Modelling of Mechanical Systems (Hammamet, Tunisia, 2017)

    Google Scholar 

  95. M. Grieves, J. Vickers, Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems, in Transdisciplinary Perspectives on Complex Systems. ed. by F.-J. Kahlen, S. Flumerfelt, A. Alves (Springer International Publishing, Cham, 2017), pp. 85–113

    Chapter  Google Scholar 

  96. Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang, M.J. Deen, A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access. 7, 49088–49101 (2019). https://doi.org/10.1109/ACCESS.2019.2909828

    Article  Google Scholar 

  97. 14:00–17:00: ISO/CD 23247–1, https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/50/75066.html

  98. F. Coallier, ISO/IEC JTC 1/SC41 IoT and Related Technologies. 46

    Google Scholar 

  99. The Structure of the Administration Shell: Trilateral Perspectives from France, Italy and Germany. 64

    Google Scholar 

  100. E.J. Tuegel, P. Kobryn, J.V. Zweber, R.M. Kolonay, Digital Thread and Twin for Systems Engineering: Design to Retirement. in 55th AIAA Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Grapevine, Texas, 2017)

    Google Scholar 

  101. Digital twins • Eclipse Ditto • a digital twin framework, https://www.eclipse.org/ditto/intro-digitaltwins.html

  102. B. He, K.-J. Bai, Digital twin-based sustainable intelligent manufacturing: a review. Adv. Manuf. (2020). https://doi.org/10.1007/s40436-020-00302-5

    Article  Google Scholar 

  103. J. Jiao, (Roger), F. Zhou, N.Z. Gebraeel, V. Duffy, Towards augmenting cyber-physical-human collaborative cognition for human-automation interaction in complex manufacturing and operational environments. Int. J. Prod. Res. 0, 1–23 (2020). https://doi.org/10.1080/00207543.2020.1722324

  104. M. Ghita, B. Siham, M. Hicham, A. Abdelhafid, D. Laurent, Digital twins: development and implementation challenges within Moroccan context. SN Appl. Sci. 2, 885 (2020). https://doi.org/10.1007/s42452-020-2691-6

    Article  Google Scholar 

  105. M. Ghita, B. Siham, M. Hicham, A.E.M. Abdelhafid, D. Laurent, Geospatial Business Intelligence and Cloud Services for Context Aware Digital Twins Development. in 2020 IEEE International conference of Moroccan Geomatics (Morgeo) (2020), pp. 1–6

    Google Scholar 

Download references

Acknowledgements

Work carried out within the framework of the cooperation agreement for technological and scientific development concluded between the UM6P and the FRDISI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mezzour Ghita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghita, M., Siham, B., Hicham, M., Griguer, H. (2021). Digital Twins Based LCA and ISO 20140 for Smart and Sustainable Manufacturing Systems. In: Joshi, A., Nagar, A.K., Marín-Raventós, G. (eds) Sustainable Intelligent Systems. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-33-4901-8_8

Download citation

Publish with us

Policies and ethics