Skip to main content

Introduction to Evolutionary Data Clustering and Its Applications

  • Chapter
  • First Online:
Evolutionary Data Clustering: Algorithms and Applications

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Clustering is concerned with splitting a dataset into groups (clusters) that represent the natural homogeneous characteristics of the data. Remarkably, clustering has a crucial role in numerous types of applications. Essentially, the applications include social sciences, biological and medical applications, information retrieval and web search algorithms, pattern recognition, image processing, machine learning, and data mining. Even that clustering is ubiquitous over a variety of areas. However, clustering approaches suffer from several drawbacks. Mainly, they are highly susceptible to clusters’ initial centroids which allows a particular dataset to easily fall within a local optimum. Handling clustering as an optimization problem is deemed an NP-hard optimization problem. However, metaheuristic algorithms are a dominant class of algorithms for solving tough and NP-hard optimization problems. This chapter anticipates the use of evolutionary algorithms for addressing the problem of clustering optimization. Therefore, it presents an introduction to clustering and evolutionary data clustering, reviews thoroughly the applications of evolutionary data clustering and its implementation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abualigah, Laith Mohammad, Ahamad Tajudin, Khader, Mohammed Azmi, Al-Betar, and Mohammed A. Awadallah. 2016. A krill herd algorithm for efficient text documents clustering. In 2016 IEEE symposium on computer applications and industrial electronics (ISCAIE), pp. 67–72. IEEE.

    Google Scholar 

  2. Al-Madi, Nailah, Ibrahim, Aljarah, and Simone A. Ludwig. 2014. Parallel glowworm swarm optimization clustering algorithm based on mapreduce. In 2014 IEEE Symposium on Swarm Intelligence, pp. 1–8. IEEE.

    Google Scholar 

  3. Al Shorman, Amaal, Hossam, Faris, and Ibrahim, Aljarah. 2020. Unsupervised intelligent system based on one class support vector machine and grey wolf optimization for iot botnet detection. Journal of Ambient Intelligence and Humanized Computing, 11(7):2809–2825.

    Google Scholar 

  4. Aljarah, Ibrahim, and Simone A. Ludwig. 2012. Parallel particle swarm optimization clustering algorithm based on mapreduce methodology. In 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 104–111. IEEE.

    Google Scholar 

  5. Aljarah, Ibrahim, and Simone A. Ludwig. 2013. Mapreduce intrusion detection system based on a particle swarm optimization clustering algorithm. In 2013 IEEE congress on evolutionary computation, pp. 955–962. IEEE.

    Google Scholar 

  6. Aljarah, Ibrahim, and Simone A. Ludwig. 2013. A new clustering approach based on glowworm swarm optimization. In 2013 IEEE congress on evolutionary computation, pp. 2642–2649. IEEE.

    Google Scholar 

  7. Aljarah, Ibrahim, and Simone A. Ludwig. 2013. Towards a scalable intrusion detection system based on parallel pso clustering using mapreduce. In Proceedings of the 15th annual conference companion on Genetic and evolutionary computation, pp. 169–170.

    Google Scholar 

  8. Aljarah, Ibrahim, Majdi, Mafarja, Ali Asghar, Heidari, Hossam, Faris, and Seyedali, Mirjalili. 2019. Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach. Knowledge and Information Systems 1–33.

    Google Scholar 

  9. Aljarah, Ibrahim, Majdi, Mafarja, Ali Asghar, Heidari, Hossam, Faris, and Seyedali, Mirjalili. 2020. Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach. Knowledge and Information Systems 62(2):507–539.

    Google Scholar 

  10. Aljarah, Ibrahim, Majdi, Mafarja, Ali Asghar, Heidari, Hossam, Faris, and Seyedali, Mirjalili. 2020. Multi-verse optimizer: theory, literature review, and application in data clustering. In Nature-Inspired Optimizers, pp. 123–141. Berlin: Springer

    Google Scholar 

  11. Aloise, Daniel, Amit Deshpande, Pierre Hansen, and Preyas Popat. 2009. Np-hardness of euclidean sum-of-squares clustering. Machine Learning 75 (2): 245–248.

    Article  Google Scholar 

  12. Alswaitti, Mohammed, Mohanad Albughdadi, and Nor Ashidi Mat Isa. 2019. Variance-based differential evolution algorithm with an optional crossover for data clustering. Applied Soft Computing 80: 1–17.

    Article  Google Scholar 

  13. Alves, Vinícius S., Ricardo J.G.B. Campello, and Eduardo R. Hruschka. 2006. Towards a fast evolutionary algorithm for clustering. In 2006 IEEE international conference on evolutionary computation, pp. 1776–1783. IEEE.

    Google Scholar 

  14. Ashish, Tripathi, Sharma, Kapil, and Bala, Manju. 2018. Parallel bat algorithm-based clustering using mapreduce. In Networking communication and data knowledge engineering, pp. 73–82. Berlin: Springer.

    Google Scholar 

  15. Ayadi, Wassim, Mourad, Elloumi, and Jin-Kao, Hao. 2018. 14 systematic and stochastic biclustering algorithms for microarray data analysis. Microarray Image and Data Analysis: Theory and Practice 369.

    Google Scholar 

  16. Balamurugan, R., A.M. Natarajan, and K. Premalatha. 2018. A new hybrid cuckoo search algorithm for biclustering of microarray gene-expression data. Applied Artificial Intelligence 32 (7–8): 644–659.

    Article  Google Scholar 

  17. Bara’a, A. Attea, and Qusay Z. Abdullah. 2018. Improving the performance of evolutionary-based complex detection models in protein—protein interaction networks. Soft Computing 22(11):3721–3744.

    Google Scholar 

  18. Berbague, Chems Eddine, Nour, El Islem Karabadji, and Hassina, Seridi. 2018. An evolutionary scheme for improving recommender system using clustering. In IFIP International Conference on Computational Intelligence and Its Applications, pp. 290–301. Berlin: Springer.

    Google Scholar 

  19. Brodić, Darko, Alessia, Amelio, and Zoran N. Milivojević. 2018. Language discrimination by texture analysis of the image corresponding to the text. Neural Computing and Applications 29(6):151–172.

    Google Scholar 

  20. Caron, Mathilde, Piotr, Bojanowski, Armand, Joulin, and Matthijs, Douze. 2018. Deep clustering for unsupervised learning of visual features. In Proceedings of the European conference on computer vision (ECCV), pp. 132–149.

    Google Scholar 

  21. Cerreto, Fabrizio, Bo Friis, Nielsen, Otto Anker, Nielsen, and Steven S. Harrod. 2018. Application of data clustering to railway delay pattern recognition. Journal of Advanced Transportation 2018.

    Google Scholar 

  22. Chen, Jianrui, Hua Wang, Zaizai Yan, et al. 2018. Evolutionary heterogeneous clustering for rating prediction based on user collaborative filtering. Swarm and Evolutionary Computation 38: 35–41.

    Article  Google Scholar 

  23. Chhabra, Jitender Kumar et al. 2018. Many-objective artificial bee colony algorithm for large-scale software module clustering problem. Soft Computing, 22(19):6341–6361.

    Google Scholar 

  24. Chou, Chih-Hsun, Su-Chen Hsieh, and Chui-Jie Qiu. 2017. Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction. Applied Soft Computing 56: 298–316.

    Article  Google Scholar 

  25. de Barros Franco, David Gabriel, and Maria Teresinha Arns, Steiner. 2018. Clustering of solar energy facilities using a hybrid fuzzy c-means algorithm initialized by metaheuristics. Journal of Cleaner Production 191:445–457.

    Google Scholar 

  26. De Santis, Enrico, Antonello Rizzi, and Alireza Sadeghian. 2018. A cluster-based dissimilarity learning approach for localized fault classification in smart grids. Swarm and Evolutionary Computation 39: 267–278.

    Article  Google Scholar 

  27. Ding, Yi, and Fu Xian. 2016. Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing 188: 233–238.

    Article  Google Scholar 

  28. Dongkuan, Xu, and Yingjie Tian. 2015. A comprehensive survey of clustering algorithms. Annals of Data Science 2: 165–193.

    Article  Google Scholar 

  29. Eberhart, Russell, and James, Kennedy. 1995. A new optimizer using particle swarm theory. In MHS’95. Proceedings of the sixth international symposium on micro machine and human science, pp. 39–43. IEEE.

    Google Scholar 

  30. Fahad, Muhammad, Farhan, Aadil, Salabat, Khan, Peer Azmat, Shah, Khan, Muhammad, Jaime, Lloret, Haoxiang, Wang, Jong Weon, Lee, Irfan, Mehmood, et al. 2018. Grey wolf optimization based clustering algorithm for vehicular ad-hoc networks. Computers & Electrical Engineering 70:853–870.

    Google Scholar 

  31. Hossam Faris, Ibrahim Aljarah, and Ja’far Alqatawna. 2015. Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In 2015 IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT), pp. 1–5. IEEE.

    Google Scholar 

  32. Faris, Hossam, Ibrahim, Aljarah, Seyedali, Mirjalili, Pedro A. Castillo, and Juan Julián Merelo, Guervós. 2016. Evolopy: An open-source nature-inspired optimization framework in python. In IJCCI (ECTA), pp. 171–177.

    Google Scholar 

  33. Feller, Daniel J., Marissa, Burgermaster, Matthew E. Levine, Arlene, Smaldone, Patricia G. Davidson, David J. Albers, and Lena, Mamykina. 2018. A visual analytics approach for pattern-recognition in patient-generated data. Journal of the American Medical Informatics Association, 25(10):1366–1374.

    Google Scholar 

  34. Goldberg, David E., and John H. Holland. 1988. Genetic algorithms and machine learning. Machine Learning, 3(2):95–99.

    Google Scholar 

  35. Guha, Sudipto, Rajeev, Rastogi, and Kyuseok, Shim. 1998. Cure: an efficient clustering algorithm for large databases. In ACM Sigmod Record, vol. 27, pp. 73–84. ACM.

    Google Scholar 

  36. Guha, Sudipto, Rajeev Rastogi, and Kyuseok Shim. 2000. Rock: A robust clustering algorithm for categorical attributes. Information Systems 25: 345–366.

    Article  Google Scholar 

  37. Halder, Amiya, Avranil, Maity, and Ananya, Das. 2019. Medical image segmentation using ga-based modified spatial fcm clustering. In Integrated Intelligent Computing, Communication and Security, pp. 595–601. Berlin: Springer.

    Google Scholar 

  38. Han, Jiawei, Jian Pei, and Micheline Kamber. 2011. Data mining: concepts and techniques. Elsevier.

    Google Scholar 

  39. Han, Yanfang, and Pengfei Shi. 2007. An improved ant colony algorithm for fuzzy clustering in image segmentation. Neurocomputing 70 (4–6): 665–671.

    Article  Google Scholar 

  40. Hrosik, Romana CAPOR, Eva, Tuba, Edin, Dolicanin, Raka, Jovanovic, and Milan, Tuba. 2019. Brain image segmentation based on firefly algorithm combined with k-means clustering. Stud. Inform. Control, 28:167–176.

    Google Scholar 

  41. Ying, Ju, Songming Zhang, Ningxiang Ding, Xiangxiang Zeng, and Xingyi Zhang. 2016. Complex network clustering by a multi-objective evolutionary algorithm based on decomposition and membrane structure. Scientific Reports 6: 33870.

    Article  Google Scholar 

  42. Karaa, Wahiba Ben Abdessalem, Amira S. Ashour, Dhekra Ben, Sassi, Payel, Roy, Noreen, Kausar, and Nilanjan, Dey. 2016. Medline text mining: an enhancement genetic algorithm based approach for document clustering. In Applications of intelligent optimization in biology and medicine, pp. 267–287. Berlin: Springer.

    Google Scholar 

  43. Karaboga, Dervis, and Celal Ozturk. 2010. Fuzzy clustering with artificial bee colony algorithm. Scientific Research and Essays 5 (14): 1899–1902.

    Google Scholar 

  44. Karaboga, Dervis, and Celal Ozturk. 2011. A novel clustering approach: Artificial bee colony (abc) algorithm. Applied Soft Computing 11 (1): 652–657.

    Article  Google Scholar 

  45. Karypis, George, Eui-Hong Sam, Han, and Vipin, Kumar. 1999. Chameleon: Hierarchical clustering using dynamic modeling. Computer, (8):68–75.

    Google Scholar 

  46. Rahul Katarya and Om Prakash Verma. 2017. An effective collaborative movie recommender system with cuckoo search. Egyptian Informatics Journal 18 (2): 105–112.

    Article  Google Scholar 

  47. Kaufman, Leonard, and Peter J. Rousseeuw. 2009. Finding groups in data: an introduction to cluster analysis, vol. 344. New York: Wiley.

    Google Scholar 

  48. Kaur, Arvinder, Saibal K. Pal, and Amrit Pal, Singh. 2018. Hybridization of k-means and firefly algorithm for intrusion detection system. International Journal of System Assurance Engineering and Management 9(4):901–910.

    Google Scholar 

  49. Kuo, R.J., and L.M. Lin. 2010. Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering. Decision Support Systems 49 (4): 451–462.

    Article  Google Scholar 

  50. Kushwaha, Neetu, and Millie Pant. 2018. Link based bpso for feature selection in big data text clustering. Future Generation Computer Systems 82: 190–199.

    Article  Google Scholar 

  51. Li, M.Q., L.P. Xu, Na, Xu, Tao, Huang, and Bo, Yan. 2018. Sar image segmentation based on improved grey wolf optimization algorithm and fuzzy c-means. Mathematical Problems in Engineering 2018.

    Google Scholar 

  52. Li, Xiangtao, and Ka-Chun, Wong. 2019. Single-cell rna sequencing data interpretation by evolutionary multiobjective clustering. IEEE/ACM transactions on computational biology and bioinformatics.

    Google Scholar 

  53. Li, Xuefang, Qiang Zhang, Zhanglin Peng, Anning Wang, and Wanying Wang. 2019. A data-driven two-level clustering model for driving pattern analysis of electric vehicles and a case study. Journal of Cleaner Production 206: 827–837.

    Article  Google Scholar 

  54. Logesh, R., V. Subramaniyaswamy, D. Malathi, N. Sivaramakrishnan, and V. Vijayakumar. 2019. Enhancing recommendation stability of collaborative filtering recommender system through bio-inspired clustering ensemble method. Neural Computing and Applications, pp. 1–24.

    Google Scholar 

  55. MacQueen, James, et al. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, pp. 281–297. Oakland, CA, USA.

    Google Scholar 

  56. Maulik, Ujjwal, and Sanghamitra Bandyopadhyay. 2000. Genetic algorithm-based clustering technique. Pattern Recognition 33 (9): 1455–1465.

    Article  Google Scholar 

  57. Murthy, Chivukula A., and Nirmalya, Chowdhury. 1996. In search of optimal clusters using genetic algorithms. Pattern Recognition Letters, 17(8):825–832.

    Google Scholar 

  58. Mustafa, Hossam M.J., Masri, Ayob, Mohd Zakree Ahmad, Nazri, and Graham, Kendall. 2019. An improved adaptive memetic differential evolution optimization algorithms for data clustering problems. PloS One 14(5):e0216906.

    Google Scholar 

  59. Ng, Raymond T., and Jiawei, Han. 2002. Clarans: A method for clustering objects for spatial data mining. IEEE Transactions on Knowledge & Data Engineering (5):1003–1016.

    Google Scholar 

  60. Niknam, Taher, Babak Amiri, Javad Olamaei, and Ali Arefi. 2009. An efficient hybrid evolutionary optimization algorithm based on pso and sa for clustering. Journal of Zhejiang University-SCIENCE A 10 (4): 512–519.

    Article  Google Scholar 

  61. Omran, Mahamed, Andries Petrus, Engelbrecht, and Ayed, Salman. 2005. Particle swarm optimization method for image clustering. International Journal of Pattern Recognition and Artificial Intelligence 19(03):297–321.

    Google Scholar 

  62. Orzechowski, Patryk, Moshe, Sipper, Xiuzhen, Huang, and Jason H, Moore. 2018. Ebic: an evolutionary-based parallel biclustering algorithm for pattern discovery. Bioinformatics 34(21):3719–3726.

    Google Scholar 

  63. Pan, Weifeng, and Chunlai Chai. 2018. Structure-aware mashup service clustering for cloud-based internet of things using genetic algorithm based clustering algorithm. Future Generation Computer Systems 87: 267–277.

    Article  Google Scholar 

  64. Park, Hae-Sang, and Chi-Hyuck Jun. 2009. A simple and fast algorithm for k-medoids clustering. Expert systems with Applications 36: 3336–3341.

    Article  Google Scholar 

  65. Parraga-Alava, Jorge, Marcio Dorn, and Mario Inostroza-Ponta. 2018. A multi-objective gene clustering algorithm guided by apriori biological knowledge with intensification and diversification strategies. BioData Mining 11 (1): 16.

    Article  Google Scholar 

  66. Priya, V., and K, Umamaheswari. 2019. Aspect-based summarisation using distributed clustering and single-objective optimisation. Journal of Information Science 0165551519827896.

    Google Scholar 

  67. Qaddoura, Raneem, Hossam Faris, and Ibrahim Aljarah. 2020. An efficient clustering algorithm based on the k-nearest neighbors with an indexing ratio. International Journal of Machine Learning and Cybernetics 11 (3): 675–714.

    Article  Google Scholar 

  68. Qaddoura, Raneem, Hossam, Faris, Ibrahim, Aljarah, and Pedro A., Castillo. 2020. Evocluster: An open-source nature-inspired optimization clustering framework in python. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar), pp. 20–36. Berlin: Springer.

    Google Scholar 

  69. Qaddoura, R., H. Faris, and I. Aljarah. 2020. An efficient evolutionary algorithm with a nearest neighbor search technique for clustering analysis. Journal of Ambient Intelligence and Humanized Computing, 1–26.

    Google Scholar 

  70. Qaddoura, R., H. Faris, I. Aljarah, J. Merelo, and P. Castillo. 2020. Empirical evaluation of distance measures for nearest point with indexing ratio clustering algorithm. In Proceedings of the 12th International Joint Conference on Computational Intelligence - Volume 1: NCTA, ISBN 978-989-758-475-6, pp. 430–438. https://doi.org/10.5220/0010121504300438.

  71. Saha, Sriparna, Ranjita Das, and Partha Pakray. 2018. Aggregation of multi-objective fuzzy symmetry-based clustering techniques for improving gene and cancer classification. Soft Computing 22 (18): 5935–5954.

    Article  Google Scholar 

  72. Said, Anwar, Rabeeh Ayaz, Abbasi, Onaiza, Maqbool, Ali, Daud, and Naif Radi, Aljohani. 2018. Cc-ga: A clustering coefficient based genetic algorithm for detecting communities in social networks. Applied Soft Computing, 63:59–70.

    Google Scholar 

  73. Saini, Naveen, Sriparna Saha, and Pushpak Bhattacharyya. 2019. Automatic scientific document clustering using self-organized multi-objective differential evolution. Cognitive Computation 11 (2): 271–293.

    Article  Google Scholar 

  74. Sarkar, Manish, B. Yegnanarayana, and Deepak, Khemani. 1997. A clustering algorithm using an evolutionary programming-based approach. Pattern Recognition Letters, 18(10):975–986.

    Google Scholar 

  75. Senthilnath, J., S.N. Omkar, and V. Mani. 2011. Clustering using firefly algorithm: performance study. Swarm and Evolutionary Computation 1 (3): 164–171.

    Article  Google Scholar 

  76. Shukri, Sarah, Hossam Faris, Ibrahim Aljarah, Seyedali Mirjalili, and Ajith Abraham. 2018. Evolutionary static and dynamic clustering algorithms based on multi-verse optimizer. Engineering Applications of Artificial Intelligence 72: 54–66.

    Article  Google Scholar 

  77. Sukumar, J.V. Anand, I. Pranav, M.M. Neetish, and Jayasree, Narayanan. 2018. Network intrusion detection using improved genetic k-means algorithm. In 2018 international conference on advances in computing, communications and informatics (ICACCI), pp. 2441–2446. IEEE.

    Google Scholar 

  78. Theodoridis, Sergios, and Konstantinos, Koutroumbas. 2006. Clustering: basic concepts. Pattern Recognition, 483–516.

    Google Scholar 

  79. Van der Merwe, D.W., and Andries Petrus, Engelbrecht. 2003. Data clustering using particle swarm optimization. In The 2003 Congress on Evolutionary Computation, 2003. CEC’03., vol. 1, pp. 215–220. IEEE.

    Google Scholar 

  80. Wang, Gang, Jinxing Hao, Jian Ma, and Lihua Huang. 2010. A new approach to intrusion detection using artificial neural networks and fuzzy clustering. Expert Systems with Applications 37 (9): 6225–6232.

    Article  Google Scholar 

  81. Wang, Heng, Zhenzhen, Zhao, Zhiwei, Guo, Zhenfeng, Wang, and Xu, Guangyin. 2017. An improved clustering method for detection system of public security events based on genetic algorithm and semisupervised learning. Complexity 2017.

    Google Scholar 

  82. Wang, Rui, Shiming Lai, Wu Guohua, Lining Xing, Ling Wang, and Hisao Ishibuchi. 2018. Multi-clustering via evolutionary multi-objective optimization. Information Sciences 450: 128–140.

    Article  MathSciNet  Google Scholar 

  83. Yang, Xin-She. 2010. Nature-inspired metaheuristic algorithms. Luniver Press. 2010.

    Google Scholar 

  84. Zhang, Minxia, Weixuan, Jiang, Yu, Xiaohan Zhou, Xue, and Shengyong, Chen. 2019. A hybrid biogeography-based optimization and fuzzy c-means algorithm for image segmentation. Soft Computing 23(6):2033–2046.

    Google Scholar 

  85. Zhang, Tian, Raghu, Ramakrishnan, and Miron, Livny. 1996. Birch: an efficient data clustering method for very large databases. In ACM Sigmod Record, vol. 25, pp. 103–114. ACM.

    Google Scholar 

  86. Zhao, Feng, Hanqiang, Liu, Jiulun, Fan, Chang Wen, Chen, Rong, Lan, and Na, Li. 2018. Intuitionistic fuzzy set approach to multi-objective evolutionary clustering with multiple spatial information for image segmentation. Neurocomputing, 312:296–309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Aljarah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aljarah, I., Habib, M., Faris, H., Mirjalili, S. (2021). Introduction to Evolutionary Data Clustering and Its Applications. In: Aljarah, I., Faris, H., Mirjalili, S. (eds) Evolutionary Data Clustering: Algorithms and Applications. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-4191-3_1

Download citation

Publish with us

Policies and ethics