Skip to main content

Unsolved Problems in Acoustic Cavitation

  • Living reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry
  • 296 Accesses

Abstract

It has long been believed that the main oxidant created inside a bubble at the bubble collapse in aqueous solutions under strong ultrasound is OH radical. However, numerical simulations of chemical reactions inside an air bubble in water indicate that the main oxidant is not always OH radical but sometimes H2O2 or O atom. The lifetime of O atom in the gas–liquid interface region is, however, unknown partly due to unknown temperature in the region. It has been experimentally reported that the upper levels of OH vibration are overpopulated inside a sonoluminescing bubble compared to the equilibrium Boltzmann distribution from the analysis of OH line spectra in SL. However, the reason is unknown although it could be due to the excitation through chemical reactions. The acoustic field inside a sonochemical reactor is also not fully understood because bubbles strongly attenuate ultrasound and radiate acoustic waves into the liquid. The spatial distribution of bubbles is strongly inhomogeneous. The number density of bubbles temporally changes due to fragmentation, coalescence, and dissolution. The liquid surface vibrates under ultrasound. The vibration of the container’s wall also affects the acoustic field because acoustic waves are radiated from the vibrating walls. The bubble–bubble interaction on pulsation of a bubble is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Yasui K, Tuziuti T, Sivakumar M, Iida Y (2004) Sonoluminescence. Appl Spectrosc Rev 39:399–436

    Article  CAS  Google Scholar 

  2. Yasui K (2015) Dynamics of acoustic bubbles. In: Grieser F, Choi P, Enomoto N, Harada H, Okitsu K, Yasui K (eds) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam, pp 41–83 (Chapter 3)

    Chapter  Google Scholar 

  3. Yasui K (2001) Effect of liquid temperature on sonoluminescence. Phys Rev E 64:016310

    Article  CAS  Google Scholar 

  4. Henglein A (1993) Contributions to various aspects of cavitation chemistry. In: Mason TJ (ed) Advances in sonochemsitry, vol 3. London, JAI Press, pp 17–83

    Google Scholar 

  5. Yasui K, Tuziuti T, Kozuka T, Towata A, Iida Y (2007) Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound. J Chem Phys 127:154502

    Article  Google Scholar 

  6. Kamath V, Prosperetti A, Egolfopoulos FN (1993) A theoretical study of sonoluminescence. J Acoust Soc Am 94:248–260

    Article  Google Scholar 

  7. Yasui K, Tuziuti T, Sivakumar M, Iida Y (2005) Theoretical study of single-bubble sonochemsitry. J Chem Phys 122:224706

    Article  Google Scholar 

  8. Yasui K, Tuziuti T, Iida Y (2004) Optimum bubble temperature for the sonochemical production of oxidants. Ultrasonics 42:579–584

    Article  CAS  Google Scholar 

  9. Hart EJ, Henglein A (1985) Free radical and free atom reactions in the sonolysis of aqueous iodide and formate solutions. J Phys Chem 89:4342–4347

    Article  CAS  Google Scholar 

  10. Richards WG, Scott PR (1976) Structure and spectra of atoms. Wiley, London

    Google Scholar 

  11. Ho RYN, Liebman JF, Valentine JS (1995) Overview of the energetics and reactivity of oxygen. In: Foote CS, Valentine JS, Greenberg A, Liebman JF (eds) Active oxygen in chemistry. Chapman & Hall, London, pp 1–23 (Chapter 1)

    Google Scholar 

  12. Slater JC (1960) Quantum theory of atomic structure, vol I. McGraw-Hill, New York

    Google Scholar 

  13. Atkins PW, Friedman RS (1997) Molecular quantum mechanics, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  14. McQuarrie DA, Simon JD (1997) Physical chemistry: a molecular approach. University Science, Sausalito

    Google Scholar 

  15. Herzberg G (1944) Atomic spectra and atomic structure, 2nd edn. Dover, New York

    Google Scholar 

  16. Biedenkapp D, Hartshorn LG, Bair EJ (1970) The O (1D) + H2O reaction. Chem Phys Lett 5:379–380

    Article  CAS  Google Scholar 

  17. Carraher JM, Bakac A (2014) Generation of free oxygen atoms O(3P) in solution by photolysis of 4-benzoylpyridine N-oxide. Phys Chem Chem Phys 16:19429–19436

    Article  CAS  Google Scholar 

  18. Voitko K, Toth A, Demianenko E, Dobos G, Berke B, Bakalinska O, Grebenyuk A, Tombacz E, Kuts V, Tarasenko Y, Kartel M, Laszlo K (2015) Catalytic performance of carbon nanotubes in H2O2 decomposition: experimental and quantum chemical study. J Colloid Interf Sci 437:283–290

    Article  CAS  Google Scholar 

  19. Christensen H, Sehested K, Corfltzen H (1982) Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperature. J Phys Chem 86:1588–1590

    Article  CAS  Google Scholar 

  20. Suslick KS, Hammerton DA, Cline RE Jr (1986) The sonochemical hot spot. J Am Chem Soc 108:5641–5642

    Article  CAS  Google Scholar 

  21. Yasui K (1996) Variation of liquid temperature at bubble wall near the sonoluminescence threshold. J Phys Soc Jpn 65:2830–2840

    Article  CAS  Google Scholar 

  22. Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750–6760

    Article  CAS  Google Scholar 

  23. Guo X, Minakata D, Niu J, Crittenden J (2014) Computer-based first-principles kinetic modeling of degradation pathways and byproduct fates in aqueous-phase advanced oxidation processes. Environ Sci Technol 48:5718–5725

    Article  CAS  Google Scholar 

  24. Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602–2605

    Article  CAS  Google Scholar 

  25. Barber BP, Hiller RA, Lofstedt R, Putterman SJ, Weninger KR (1997) Defining the unknowns of sonoluminescence. Phys Rep 281:65–143

    Article  CAS  Google Scholar 

  26. Young FR (2005) Sonoluminescence. CRC Press, Boca Raton

    Google Scholar 

  27. Brenner MP, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74:425–484

    Article  CAS  Google Scholar 

  28. Young JB, Nelson JA, Kang W (2001) Line emission in single-bubble sonoluminescence. Phys Rev Lett 86:2673–2676

    Article  CAS  Google Scholar 

  29. Luque J, Crosley DR (1998) Transition probabilities in the A 2Σ+ - X 2Πi electronic system of OH. J Chem Phys 109:439–448

    Article  CAS  Google Scholar 

  30. Pearse RWB, Gaydon AG (1976) The identification of molecular spectra, 4th edn. Chapman and Hall, London, pp 264–265

    Book  Google Scholar 

  31. Atkins P, Paula J (2014) Atkins’ physical chemistry, 10th edn. Oxford University Press, Oxford

    Google Scholar 

  32. Pflieger R, Brau HP, Nikitenko SI (2010) Sonoluminescence from OH (C 2Σ+) and OH (A 2Σ+) radicals in water: evidence for plasma formation during multibubble cavitation. Chem Eur J 16:11801–11803

    Article  CAS  Google Scholar 

  33. Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434:52–55

    Article  CAS  Google Scholar 

  34. Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95:044301

    Article  Google Scholar 

  35. Ndiaye AA, Pflieger R, Siboulet B, Molina J, Dufreche JF, Nikitenko SI (2012) Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water. J Phys Chem A 116:4860–4867

    Article  CAS  Google Scholar 

  36. Mavrodineanu R, Boiteux H (1965) Flame spectroscopy. Wiley, New York, pp 509–510

    Google Scholar 

  37. Treanor CE, Rich JW, Rehm RG (1968) Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions. J Chem Phys 48:1798–1807

    Article  CAS  Google Scholar 

  38. Brau CA (1972) Classical theory of vibrational relaxation of anharmonic oscillators. Physica 58:533–553

    Article  Google Scholar 

  39. Bray KNC (1968) Vibrational relaxation of anharmonic oscillator molecules: relaxation under isothermal conditions. J Phys B 1:705–717 (Proc Phys Soc Ser. 2)

    Article  Google Scholar 

  40. Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  41. An Y, Li C (2008) Spectral lines of OH radicals and Na atoms in sonoluminescence. Phys Rev E 78:046313

    Article  Google Scholar 

  42. Yasui K (2001) Temperature in multibubble sonoluminescence. J Chem Phys 115:2893–2896

    Article  CAS  Google Scholar 

  43. Flannigan DJ, Suslick KS (2012) Temperature nonequilibration during single-bubble sonoluminescence. J Phys Chem Lett 3:2401–2404

    Article  CAS  Google Scholar 

  44. Pflieger R, Ndiaye AA, Chave T, Nikitenko SI (2015) Influence of ultrasonic frequency on swan band sonoluminescence and sonochemical activity in aqueous tert-butyl alcohol solutions. J Phys Chem B 119:284–290

    Article  CAS  Google Scholar 

  45. Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J, Macey P (2007) FEM calculation of an acoustic field in a sonochemical reactor. Ultrason Sonochem 14:605–614

    Article  CAS  Google Scholar 

  46. Zienkiewicz OC (1977) The finite element method, 3rd edn. McGraw-Hill, London

    Google Scholar 

  47. Dahnke S, Keil F (1998) Modeling of sound fields in liquids with a nonhomogeneous distribution of cavitation bubbles as a basis for the design of sonochemical reactors. Chem Eng Technol 21:873–877

    Article  Google Scholar 

  48. McMurray HN, Wilson BP (1999) Mechanistic and spatial study of ultrasonically induced luminol chemiluminescence. J Phys Chem 103:3955–3962

    Article  CAS  Google Scholar 

  49. Kinsler LE, Frey AR, Coppens AB, Sanders JV (1982) Fundamentals of acoustics, 3rd edn. Wiley, New York

    Google Scholar 

  50. Leighton TG (1994) The acoustic bubble. Academic, London

    Google Scholar 

  51. Hamilton MF, Il’inskii YA, Zabolotskaya EA (1998) Dispersion. In: Hamilton MF, Blackstock DT (eds) Nonlinear acoustics. Academic, San Diego, pp 151–175, Chapter 5

    Google Scholar 

  52. An Y (2012) Nonlinear bubble dynamics of cavitation. Phys Rev E 85:016305

    Article  Google Scholar 

  53. Tuziuti T, Yasui K, Kozuka T, Towata A (2010) Influence of liquid-surface vibration on sonochemiluminescence intensity. J Phys Chem A 114:7321–7325

    Article  CAS  Google Scholar 

  54. Tuziuti T, Yasui K, Lee J, Kozuka T, Towata A, Iida Y (2008) Mechanism of enhancement of sonochemical-reaction efficiency by pulsed ultrasound. J Phys Chem A 112:4875–4878

    Article  CAS  Google Scholar 

  55. Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2010) Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles. Ultrason Sonochem 17:460–472

    Article  CAS  Google Scholar 

  56. Yasui K, Towata A, Tuziuti T, Kozuka T, Kato K (2011) Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. J Acoust Soc Am 130:3233–3242

    Article  CAS  Google Scholar 

  57. Yasui K, Lee J, Tuziuti T, Towata A, Kozuka T, Iida Y (2009) Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. J Acoust Soc Am 126:973–982

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyuichi Yasui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Yasui, K. (2015). Unsolved Problems in Acoustic Cavitation. In: Ashokkumar, M. (eds) Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-470-2_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-470-2_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-287-470-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics