Skip to main content

Solid Suspension and Solid-Liquid Mass Transfer in Stirred Reactors

  • Reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology

Abstract

Stirred tank reactors are among the most commonly used reactors for solid-liquid operations in the chemical industry. A generalized design procedure of the solid-liquid stirred tank is presented here for the benefit of a practicing engineer. The different aspects of solid-liquid reactor design like mixing, solid suspension, heat transfer, and mass transfer are discussed. This chapter covers details of impeller design and impeller selection procedure. A case study of uranium oxide dissolution in nitric acid is chosen to demonstrate the design procedure. Finally, the optimized design of the hardware for the same case study with general recommendations is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

Stoichiometric coefficient of reactant A (−)

a p :

Interfacial area in (m2/m3)

A :

Liquid reactant(−)

A i :

Tank side heat transfer area (m2)

A o :

Jacket side or coil side heat transfer area (m2)

B :

Solid reactant(−)

C :

The mass of solids per unit volume of slurry \( \left(\frac{\mathrm{kg}}{{\mathrm{m}}^3}\right) \)

c :

Cylindrical tank bottom clearance (m)

C A :

Intermediate concentration of \( A\left(\frac{\mathrm{kmol}}{{\mathrm{m}}^3}\right) \)

C AL :

Concentration of A in the liquid phase \( \left(\frac{\mathrm{kmol}}{{\mathrm{m}}^3}\right) \)

C AS :

Concentration of A on the solid surface \( \left(\frac{\mathrm{kmol}}{{\mathrm{m}}^3}\right) \)

C AC :

Concentration of A in the unreacted core \( \left(\frac{\mathrm{kmol}}{{\mathrm{m}}^3}\right) \)

C B :

Concentration of \( B\left(\frac{\mathrm{kmol}}{{\mathrm{m}}^3}\right) \)

C B0 :

Initial concentration of \( B\left(\frac{\mathrm{kmol}}{{\mathrm{m}}^3}\right) \)

CBT :

Curved blade turbine(−)

C D :

Drag coefficient(−)

Cp j :

Specific heat of utility fluid \( \left(\frac{J}{\mathrm{kg}K}\right) \)

Cp T :

Specific heat of the mixture \( \left(\frac{J}{\mathrm{kg}K}\right) \)

d p :

Particle diameter (m)

D :

Impeller diameter (m)

DT :

Disk turbine(−)

D A :

Diffusivity of the liquid phase reactant \( A\left(\frac{{\mathrm{m}}^2}{\mathrm{s}}\right) \)

D e :

Effective diffusivity of liquid reactant in the ash layer \( \left(\frac{{\mathrm{m}}^2}{\mathrm{s}}\right) \)

FBT :

Flat blade turbine(−)

F j :

Volumetric flow rate of the utility fluid \( \left(\frac{{\mathrm{m}}^3}{\mathrm{s}}\right) \)

g :

Gravitational acceleration \( \left(\frac{\mathrm{m}}{{\mathrm{s}}^2}\right) \)

H :

Height of the liquid in the reactor (m)

HE – 3 :

3 bladed – high efficiency impeller(−)

H b :

Height of bed of the solids (m)

H C :

Cloud height (m)

H S :

Height of the solids’ suspension (m)

HTC :

Heat transfer coefficient \( \left(\frac{W}{{\mathrm{m}}^2K}\right) \)

h i :

Process side or tank side heat transfer coefficient \( \left(\frac{W}{{\mathrm{m}}^2K}\right) \)

h ji :

Tank side heat transfer coefficient when the jacket is used \( \left(\frac{W}{{\mathrm{m}}^2K}\right) \)

h o :

Utility side heat transfer coefficient \( \left(\frac{W}{{\mathrm{m}}^2K}\right) \)

h sj :

Utility side heat transfer coefficient for the simple jacket \( \left(\frac{W}{{\mathrm{m}}^2K}\right) \)

h bj :

Utility side heat transfer coefficient for the baffled jacket \( \left(\frac{W}{{\mathrm{m}}^2K}\right) \)

h lc :

Utility side heat transfer coefficient for the limpet coil \( \left(\frac{W}{{\mathrm{m}}^2K}\right) \)

h c :

Utility side heat transfer coefficient for the internal coil \( \left(\frac{W}{{\mathrm{m}}^2K}\right) \)

h ci :

Tank side heat transfer coefficient when the internal coil is used \( \left(\frac{W}{{\mathrm{m}}^2K}\right) \)

ΔHR:

Heat of reaction \( \left(\frac{J}{\mathrm{kmol}}\right) \)

K :

Thermal conductivity of the reaction mixture \( \left(\frac{W}{\mathrm{m}K}\right) \)

K j :

Thermal conductivity of the utility fluid \( \left(\frac{W}{\mathrm{m}K}\right) \)

k SL :

Mass transfer coefficient between solid and liquid \( \left(\frac{\mathrm{m}}{\mathrm{s}}\right) \)

k′ :

First order rate constant for the surface reaction \( \left(\frac{\mathrm{m}}{\mathrm{s}}\right) \)

L :

Half thickness of the flat pate (m)

(LMTD)j:

Log mean temperature difference (K)

M :

Mass of the slurry (kg)

MF :

Mass of solid per total mass of slurry(−)

MT :

Mixing time (s)

MTC :

Mass transfer coefficient between solid and liquid \( \left(\frac{\mathrm{m}}{\mathrm{s}}\right) \)

m j :

Mass flow rate of the utility fluid \( \left(\frac{\mathrm{kg}}{\mathrm{s}}\right) \)

N :

Speed of the impeller (rev/s)

N B0 :

Initial number of moles of B (kmol)

N jd :

Critical speed for just draw down of the solids (rev/s)

N js :

Critical speed for just off – bottom suspension (rev/s)

N P :

Impeller power number(−)

Nu :

Nusselt number used for the tank side heat transfer correlation(−)

N De :

Dean number for the limpet coil(−)

N pr :

Prandtl number used for the utility side heat transfer correlation(−)

N Re :

Raynolds number used for the utility side heat transfer correlation(−)

N Nu :

Nusselt number used for the utility side heat transfer correlation(−)

PBT :

45 degree pitched blade turbine(−)

PBTD – 4:

4 – blade 45 degree pitched blade turbine downflow(−)

PBTD – 6:

6 – blade 45 degree pitched blade turbine downflow(−)

Pr:

Prandtl number used for the tank side heat transfer correlation(−)

PTU :

45 degree pitched blade turbine upflow(−)

P js :

Power consumption at critical suspension speed (W)

Q :

The total heat load of the system (W)

Re :

Impellers Raynolds number used for the tank side heat transfer correlation(−)

Re p :

Particle Raynolds Number(−)

R 0 :

Initial radius of the shrinking particle at time t = 0 (m)

R :

Radius of the particle (m)

RT :

Reaction time (sec)

r c :

Radius of the unreacted core of the particle (m)

r :

Radius of the unreacted core of the particle at any time t (m)

S :

Zweitering’s constant dependent on tank and impeller dimensions(−)

Sh :

Sharewood number(−)

Sc :

Schmidt number(−)

t :

time (s)

t R :

thickness of the reactor (m)

T :

Tank diameter (m)

T j :

Utility side temperature in K

T jt :

Utility fluid inlet temperature (K)

T jo :

Utility fluid outlet temperature (K)

T R :

Reaction temperature (K)

T T :

Tank temperature in K

T w :

Temperature of the wall (K)

Δtg:

The temperature difference between the bulk of the utility fluid and the wall (K)

V :

Volume of the reaction mixture (m3)

V j :

Volume of the jacket or coil (m3)

v t :

Terminal settling velocity \( \left(\frac{\mathrm{m}}{\mathrm{s}}\right) \)

vs:

Hindered settling velocity \( \left(\frac{\mathrm{m}}{\mathrm{s}}\right) \)

X :

Solid loading by weight % (mass of solid / mass of liquid × 100)

X v :

Solid loading by volume % (volume of solid / volume of slurry × 100)

X B :

Conversion of reactant B (−)

Z :

The constant used in the GMB correlation(−)

β :

Volumetric expansion coefficient (K−1)

φ :

The volume of solids divided by the volume of solid – free liquid(−)

μ avg :

Average dynamic viscosity of slurry (Pas)

μ j :

Viscosity of the utility fluid (Pas)

μ L :

Dynamic viscosity of liquid (Pas)

γ :

Kinamatic viscosity \( \left(\frac{{\mathrm{m}}^2}{\mathrm{s}}\right) \)

ρ avg :

Average slurry density \( \left(\frac{\mathrm{kg}}{{\mathrm{m}}^3}\right) \)

ρ B :

Molar density of reactant B in \( \left(\frac{\mathrm{kmol}}{{\mathrm{m}}^3}\right) \)

ρ L :

Density of liquid \( \left(\frac{\mathrm{kg}}{{\mathrm{m}}^3}\right) \)

ρ s :

Density of solid \( \left(\frac{\mathrm{kg}}{{\mathrm{m}}^3}\right) \)

Δρ:

Density difference between solid and liquid \( \left({\rho}_s-{\rho}_L\right)\left(\frac{\mathrm{kg}}{{\mathrm{m}}^3}\right) \)

τ :

Time required for complete conversion (sec)

τ FD :

Time to complete the reaction by film diffusion (sec)

τ SR :

Time to complete the reaction by surface reaction (sec)

ε :

Particle hold – up(−)

ε p :

Power consumption per unit mass \( \left(\frac{\mathrm{Watt}}{\mathrm{kg}}\right) \)

()CS:

Dimensionless mixing time at critical suspension speed(−)

θ :

Mixing time (s)

References

  • P.M. Armenante, D.J. Kirwan, Mass transfer to microparticles in agitated systems. Chem. Eng. Sci. 44(12), 2781–2796 (1989)

    Article  Google Scholar 

  • P.M. Armenante, E.U. Nagamine, Effect of low off-bottom impeller clearance on the minimum agitation speed for complete suspension of solids in stirred tanks. Chem. Eng. Sci. 53(9), 1757–1775 (1998)

    Article  Google Scholar 

  • P.M. Armenante, E.U. Nagamine, J. Susanto, Determination of correlations to predict the minimum agitation speed for complete solid suspension in agitated vessels. Can. J. Chem. Eng. 76(3), 413–419 (1998)

    Article  Google Scholar 

  • P.M. Armenante, Y.S. Li, Complete design analysis of a continuous sterilizer for fermentation media containing suspended solids. Biotechnol. Bioeng. 41(9), 900–913 (1993)

    Article  Google Scholar 

  • G. Ascanio, Mixing time in stirred vessels: A review of experimental techniques. Chin. J. Chem. Eng. 23(7), 1065–1076 (2015)

    Article  Google Scholar 

  • W.S. Askew, R.O.B.E.R.T.B. Beckmann, Heat and mass transfer in an agitated vessel. Ind. Eng. Chem. Process. Des. Dev. 4(3), 311–318 (1965)

    Article  Google Scholar 

  • I. Ayranci, S.M. Kresta, Design rules for suspending concentrated mixtures of solids in stirred tanks. Chem. Eng. Res. Des. 89(10), 1961–1971 (2011)

    Article  Google Scholar 

  • I. Ayranci, S.M. Kresta, Critical analysis of Zwietering correlation for solids suspension in stirred tanks. Chem. Eng. Res. Des. 92(3), 413–422 (2014)

    Article  Google Scholar 

  • A. Azarafza et al., Experimental and numerical study of iron pyrite nanoparticles synthesis based on hydrothermal method in a laboratory-scale stirred autoclave. Powder Technol. 287, 177–189 (2016)

    Article  Google Scholar 

  • G. Baldi, R. Conti, E. Alaria, Complete suspension of particles in mechanically agitated vessels. Chem. Eng. Sci. 33(1), 21–25 (1978)

    Article  Google Scholar 

  • A.V. Barderas, B. Roadea, How to calculate the volumes of partially full tanks. Proc Int J Res Eng Technol, 2–7 (2016)

    Google Scholar 

  • J.J. Barker, R.E. Treybal, Mass transfer coefficients for solids suspended in agitated liquids. AICHE J. 6(2), 289–295 (1960)

    Article  Google Scholar 

  • K.J. Bittorf, S.M. Kresta, Prediction of cloud height for solid suspensions in stirred tanks. Chem. Eng. Res. Des. 81(5), 568–577 (2003)

    Article  Google Scholar 

  • K.J. Bittorf, S.M. Kresta, Three-dimensional wall jets: axial flow in a stirred tank. AICHE J. 47(6), 1277–1284 (2001)

    Article  Google Scholar 

  • S. Boon-Long, C. Laguerie, J.P. Couderc, Mass transfer from suspended solids to a liquid in agitated vessels. Chem. Eng. Sci. 33(7), 813–819 (1978)

    Article  Google Scholar 

  • P.L.T. Brian, H.B. Hales, Effects of transpiration and changing diameter on heat and mass transfer to spheres. AICHE J. 15(3), 419–425 (1969)

    Article  Google Scholar 

  • W. Bujalski et al., Suspension and liquid homogenization in high solids concentration stirred chemical reactors. Chem. Eng. Res. Des. 77(3), 241–247 (1999)

    Article  Google Scholar 

  • R.V. Chaudhari, P.A. Ramachandran, Three phase slurry reactors. AICHE J. 26(2), 177–201 (1980)

    Article  Google Scholar 

  • R. Conti, S. Sicardi, Mass transfer from freely-suspended particles in stirred tanks. Chem. Eng. Commun. 14(1–2), 91–98 (1982)

    Article  Google Scholar 

  • R. Conti, S. Sicardi, V. Specchia, Effect of the stirrer clearance on particle suspension in agitated vessels. Chem. Eng. J. 22(3), 247–249 (1981)

    Article  Google Scholar 

  • R.F. Cope, K.K. Kar, KT-3: a novel tickler for solids removal from slurry vessels. Ind. Eng. Chem. Res. 48(10), 4990–4997 (2009)

    Article  Google Scholar 

  • J.T. Davies, Particle suspension and mass transfer rates in agitated vessels. Chem. Eng. Process. Process Intensif. 20(4), 175–181 (1986)

    Article  Google Scholar 

  • N. Desigan et al., Dissolution kinetics of Indian PHWR natural UO2 fuel pellets in nitric acid – effect of initial acidity and temperature. Prog. Nucl. Energy 83, 52–58 (2015)

    Article  Google Scholar 

  • N. Desigan et al., Mechanism of dissolution of nuclear fuel in nitric acid relevant to nuclear fuel reprocessing. J. Radioanal. Nucl. Chem. 312(1), 141–149 (2017)

    Article  Google Scholar 

  • M.T. Dhotre, Z.V.P. Murthy, N.S. Jayakumar, Modeling & dynamic studies of heat transfer cooling of liquid in half-coil jackets. Chem. Eng. J. 118(3), 183–188 (2006)

    Article  Google Scholar 

  • L.K. Doraiswamy, M.M. Sharma, Heterogeneous reactions: analysis examples and reactor design. Vol. 1: gas solid and solid-solid reactions (1984)

    Google Scholar 

  • R.F. Dream, Heat transfer in agitated jacketed vessels. Chem. Eng. (N. Y.) 106(1), 90–96 (1999)

    Google Scholar 

  • N.N. Dutta, V.G. Pangarkar, Critical impeller speed for solid suspension in multi-impeller agitated contactors: solid-liquid system. Chem. Eng. Commun. 137(1), 135–146 (1995)

    Article  Google Scholar 

  • A.M. Flynn, T. Akashige, L. Theodore, Kern’s Process Heat Transfer (Wiley, 2019)

    Book  Google Scholar 

  • A. Ghionzoli et al., The effect of bottom roughness on the minimum agitator speed required to just fully suspend particles in a stirred vessel. Chem. Eng. Res. Des. 85(5), 685–690 (2007)

    Article  Google Scholar 

  • R.K. Grenville, A.T.C. Mak, D.A.R. Brown, Suspension of solid particles in vessels agitated by axial flow impellers. Chem. Eng. Res. Des. 100, 282–291 (2015)

    Article  Google Scholar 

  • R.K. Grenville, A.T.C. Mak, D.A.R. Brown, An improved correlation to predict ‘just suspension’ speed for solid–liquid mixtures with axial flow impellers in stirred tanks, in North American Mixing Forum, Victoria, BC, Canada (June 20–June 25), (2010)

    Google Scholar 

  • R.K. Grenville, J.J. Giacomelli, D.A.R. Brown, Suspension of solid particles in vessels agitated by Rushton turbine imperllers. Chem. Eng. Res. Des. 109, 730–733 (2016)

    Article  Google Scholar 

  • D. Guerci, R. Conti, S. Sicardi, Mixed flow stirrer performances in solid suspensions in agitated vessels. Proc. Colloque Agitation Mécanique, Toulouse, 3–18 (1986)

    Google Scholar 

  • R.R. Hemrajani, Suspending floating solids in stirred tanks-mixer design, scale-up and optimization, in The 6th European Conference on Mixing, BHRA, Pavia, Italy, 1988, (1988)

    Google Scholar 

  • M.T. Hicks et al., Cloud height, fillet volume, and the effect of multiple impellers in solid suspension, in Mixing XIV, Santa Barbara, CA, June: 20–25, (1993)

    Google Scholar 

  • M.T. Hicks, K.J. Myers, A. Bakker, Cloud height in solids suspension agitation. Chem. Eng. Commun. 160(1), 137–155 (1997)

    Article  Google Scholar 

  • A.W. Hixson, S.J. Baum, Agitation. Mass transfer coefficients in liquid-solid agitation systems. Ind Eng Chem 33(4), 478–485 (1941)

    Article  Google Scholar 

  • R. Jafari, P.A. Tanguy, J. Chaouki, Characterization of minimum impeller speed for suspension of solids in liquid at high solid concentration, using gamma-ray densitometry. Int. J. Chem. Eng. 2012, 1–15 (2012)

    Article  Google Scholar 

  • M. Jaszczur, A. Młynarczykowska, A general review of the current development of mechanically agitated vessels. PRO 8(8), 982 (2020)

    Google Scholar 

  • G.E.H. Joosten, J.G.M. Schilder, A.M. Broere, The suspension of floating solids in stirred vessels (1977)

    Google Scholar 

  • G.R. Kasat, A.B. Pandit, Review on mixing characteristics in solid-liquid and solid-liquid-gas reactor vessels. Can. J. Chem. Eng. 83(4), 618–643 (2008)

    Article  Google Scholar 

  • O. Khazam, S.M. Kresta, Mechanisms of solids drawdown in stirred tanks. Can. J. Chem. Eng. 86(4), 622–634 (2008)

    Article  Google Scholar 

  • M. Kraume, Mixing times in stirred suspensions. Chem. Eng. Technol. 15(5), 313–318 (1992)

    Article  Google Scholar 

  • S.M. Kresta, Advances in industrial mixing. 1034

    Google Scholar 

  • P. Lal, S. Kumar, S.N. Upadhyay, Y.D. Upadhya, Solid-liquid mass transfer in agitated Newtonian and non-Newtonian fluids. Ind. Eng. Chem. Res. 27(7), 1246–1259 (1988)

    Article  Google Scholar 

  • O. Levenspiel, Chemical Reaction Engineering. Hauptbd, 3rd edn. (Wiley, New York/Weinheim, 1999)

    Google Scholar 

  • D.M. Levins, J.R. Glastonbury, Application of Kolmogorofff’s theory to particle – liquid mass transfer in agitated vessels. Chem. Eng. Sci. 27(3), 537–543 (1972a)

    Article  Google Scholar 

  • D.M. Levins, J.R. Glastonbury, Particle-liquid hydrodynamics and mass transfer in a stirred vessel, part I–particle-liquid motion. Trans. Inst. Chem. Eng. 50, 32–41 (1972b)

    Google Scholar 

  • W. Li-jun, Z. Hai-jun, Y. Xiao-kang, L. Zhen, Experimental and numerical study on the stirred pulp-mixing process with addition accessory, in 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), (IEEE, Xianning, 2011), pp. 1260–1263. http://ieeexplore.ieee.org/document/5769055/ (December 3, 2021)

    Chapter  Google Scholar 

  • R.S. MacTaggart, H.A. Nasr-El-Din, J.H. Masliyah, Sample withdrawal from a slurry mixing tank. Chem. Eng. Sci. 48(5), 921–931 (1993)

    Google Scholar 

  • A.T.-C. Mak, Solid-Liquid Mixing in Mechanically Agitated Vessels (University of London, University College London (United Kingdom), 1992)

    Google Scholar 

  • Megawati et al., Scale-up of solid-liquid mixing based on constant power/volume and equal blend time using VisiMix simulation, in MATEC Web of Conferences, ed. by J. Wang, Y.F. Yang, (2018)., 187:04002

    Google Scholar 

  • M. Micheletti, L. Nikiforaki, K.C. Lee, M. Yianneskis, Particle concentration and mixing characteristics of moderate-to-dense solid−liquid suspensions. Ind. Eng. Chem. Res. 42(24), 6236–6249 (2003)

    Article  Google Scholar 

  • P. Mohan, A.N. Emery, T. Al-Hassan, Review heat transfer to Newtonian fluids in mechanically agitated vessels. Exp. Thermal Fluid Sci. 5(6), 861–883 (1992)

    Article  Google Scholar 

  • K.J. Myers, A. Bakker, Solids suspension with up-pumping pitched-blade and high-efficiency impellers. Can. J. Chem. Eng. 76(3), 433–440 (1998)

    Article  Google Scholar 

  • K.J. Myers, J.B. Fasano, R.R. Corpstein, The influence of solid properties on the just-suspended agitation requirements of pitched-blade and high-efficiency impellers. Can. J. Chem. Eng. 72(4), 745–748 (1994)

    Article  Google Scholar 

  • H.A. Nasr-El-Din, C.A. Shook, M.N. Esmail, Isokinetic probe sampling from slurry pipelines. Can. J. Chem. Eng. 62(2), 179–185 (1984)

    Google Scholar 

  • H.A. Nasr-El-Din, C.A. Shook, Particle segregation in slurry flow through vertical tees. Int. J. Multi. Fl. 12(3), 427–443 (1986)

    Google Scholar 

  • H.A. Nasr-El-Din, A. Afacan, J.H. Masliyah, Solids segregation in slurry flow through a T-junction with a horizontal approach. Int. J. Multi. Fl. 15(4), 659–671 (1989)

    Google Scholar 

  • A.W. Nienow, Agitated vessel particle-liquid mass transfer: a comparison between theories and data. Chem Eng J 9(2), 153–160 (1975)

    Article  Google Scholar 

  • A.W. Nienow, D. Miles, The effect of impeller/tank, configurations on fluid-particle mass transfer. Chem Eng J 15(1), 13–24 (1978)

    Article  Google Scholar 

  • G. Özcan-Taşkin, H. Wei, The effect of impeller-to-tank diameter ratio on draw down of solids. Chem. Eng. Sci. 58(10), 2011–2022 (2003)

    Article  Google Scholar 

  • V.T. Perarasu, M. Arivazhagan, P. Sivashanmugam, Heat transfer studies in coiled agitated vessel with varying heat input. Int. J. Food Eng. 7(4) (2011) https://www.degruyter.com/document/doi/10.2202/1556-3758.2211/html (March 15, 2022)

  • K.S.M.S. Raghava Rao, V.B. Rewatkar, J.B. Joshi, Critical impeller speed for solid suspension in mechanically agitated contactors. AICHE J. 34(8), 1332–1340 (1988)

    Article  Google Scholar 

  • K.S.M.S.R. Rao, J.B. Joshi, Liquid-phase mixing and power consumption in mechanically agitated solid – liquid contactors. Chem Eng J 39(2), 111–124 (1988)

    Article  Google Scholar 

  • M.V. Sardeshpande, G. Kumar, T. Aditya, V.V. Ranade, Mixing studies in unbaffled stirred tank reactor using electrical resistance tomography. Flow Meas. Instrum. 47, 110–121 (2016)

    Article  Google Scholar 

  • M.V. Sardeshpande, A.R. Sagi, V.A. Juvekar, V.V. Ranade, Solid suspension and liquid phase mixing in solid−liquid stirred tanks. Ind. Eng. Chem. Res. 48(21), 9713–9722 (2009)

    Article  Google Scholar 

  • P. Sykes, A. Gomezplata, Particle liquid mass transfer in stirred tanks. Can. J. Chem. Eng. 45(4), 189–196 (1967)

    Article  Google Scholar 

  • K. Takahashi, H. Fujita, T. Yokota, Effect of size of spherical particle on complete suspension speed in agitated vessels of different scale. J. Chem. Eng. Jpn. 26(1), 98–100 (1993)

    Article  Google Scholar 

  • K. Takenaka et al., Mixing time for different diameters of impeller at a high solid concentration in an agitated vessel. J. Chem. Eng. Jpn. 38(5), 309–315 (2005)

    Article  Google Scholar 

  • A. Tamburini et al., Solid–liquid suspensions in top-covered unbaffled vessels: influence of particle size, liquid viscosity, impeller size, and clearance. Ind. Eng. Chem. Res. 53(23), 9587–9599 (2014)

    Article  Google Scholar 

  • T. Wang et al., Hydrodynamic characteristics of dual-impeller configurations in a multiple-phase stirred tank. Ind. Eng. Chem. Res. 49(3), 1001–1009 (2010)

    Article  Google Scholar 

  • T.N. Zwietering, Suspending of solid particles in liquid by agitators. Chem. Eng. Sci. 8(3–4), 244–253 (1958)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Joshi, S.S., Vitankar, V.S., Dalvi, V.H., Joshi, J.B. (2023). Solid Suspension and Solid-Liquid Mass Transfer in Stirred Reactors. In: Yeoh, G.H., Joshi, J.B. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-092-6_49

Download citation

Publish with us

Policies and ethics