Skip to main content

Deep Learning-Based Three Type Classifier Model for Non-small Cell Lung Cancer from Histopathological Images

  • Conference paper
  • First Online:
Third Congress on Intelligent Systems (CIS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 613))

Included in the following conference series:

  • 315 Accesses

Abstract

Lung cancer is becoming one of the most menacing cancers to human health. Small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) are the two kinds of lung cancer, which are classified based on patterns in behavior and treatment response. Non-small cell lung cancer is classified as lung adenocarcinomas, lung squamous cell carcinomas, and large cell carcinoma. The two most prevalent types of NSCLC are lung adenocarcinoma, which accounts for about 40% and lung squamous cell carcinoma (LUSC), which accounts for almost 25–30% of all lung cancers. Building an automated categorization system for these two primary NSCLC subtypes is vital for building a computer-aided diagnostic system (CAD). CAD can improve the quality and efficiency of medical image analysis by increasing diagnosis accuracy and stability, reducing the chance of wrong diagnosis due to subjective factors and missed diagnosis. With the rapid development of Convolutional Neural Networks (CNN) in image processing, a variety of CNN architectures have emerged, that achieve outstanding image classification performance. In this paper InceptionV3, DenseNet-201, and XceptionNet are selected as candidate networks due to their outstanding classification performance with 99.07%, 95.63%, 98.9%, respectively. The results of our study shows that InceptionV3 performs well in the categorization of types of non-small cell lung cancer histopathological images and benign images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kobayashi T, Xu X-W, MacMahon H, Metz CE, Doi K (1996) Effect of a computer-aided diagnosis scheme on radiologist’s performance in detection of lung nodules on radiographs. Radiology 199:843–848

    Article  Google Scholar 

  2. MacMahon H, Engelmann R, Behlen FM et al (1999) Computer-aided diagnosis of pulmonary nodules: results of a large-scale observer test. Radiology 213:723–726

    Article  Google Scholar 

  3. Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, Liu W, Yu L (2017) Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images. EJNMMI Res. Article No. 11

    Google Scholar 

  4. Hussein S, Gillies R, Cao K, Song Q, Bagci U (2017) Tumornet: lung nodule characterization using multi-view convolutional neural network with Gaussian process. In: IEEE 14th international symposium on biomedical imaging, pp 1007–1010

    Google Scholar 

  5. Masood A, Sheng B, Li P, Hou X, Wei X, Qin J, Feng D (2018) Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images. J Biomed Inform 79:117–128

    Google Scholar 

  6. Hussein S, Cao K, Song Q, Bagci U (2017) Risk stratification of lung nodules using 3d CNN-based multi-task learning. In: International conference on information processing in medical imaging. Springer, pp 249–260

    Google Scholar 

  7. Xie Y, Zhang J, Xia Y (2019) Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT. Med Image Anal 57:237–248

    Google Scholar 

  8. Humayun M, Sujatha R, Almuayqil SN, Jhanjhi NZ (2022) A transfer learning approach with a convolutional neural network for the classification of lung carcinoma. Healthcare (Basel) 10(6):1–10

    Google Scholar 

  9. Pandey A, Kumar A (2022) Deep features based automated multimodel system for classification of non-small cell lung cancer. In: IEEE Delhi section conference (DELCON), pp 1–7

    Google Scholar 

  10. Vinutha MR, Chandrika J (2021) Prediction of liver disease using regression tree. Int J Online Biomed Eng (iJOE) 17(02):164–172

    Article  Google Scholar 

  11. Prashanth SJ, Prakash H (2021) A features fusion approach for neonatal and pediatrics brain tumor image analysis using genetic and deep learning techniques. Int J Online Biomed Eng (iJOE) 17(11):124–140

    Google Scholar 

  12. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, pp 818–833

    Google Scholar 

  13. Nguyen L, Lin D, Lin Z, Cao J (2018) Deep CNNs for microscopic image classification by exploiting transfer learning and feature concatenation. In: IEEE international symposium on circuits and systems (ISCAS), pp 1–5

    Google Scholar 

  14. Rahman T, Chowdhury ME, Khandakar A, Islam KR, Islam KF, Mahbub ZB, Kadir MA, Kashem S (2020) Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray. Appl Sci 10(9)

    Google Scholar 

  15. Kingma DP, Ba J (2017) Adam: a method for stochastic optimization. Computing Research Repository

    Google Scholar 

  16. Borkowski AA, Bui MM, Thomas LB, Wilson CP, DeLand LA, Mastorides SM (2019) Lung and colon cancer histopathological image dataset (LC25000). arXiv:1912.12142v1 [eess.IV]

  17. Liu H, Jiao Z, Han W, Jing B (2021) Identifying the histologic subtypes of non-small cell lung cancer with computed tomography imaging: a comparative study of capsule net, convolutional neural network, and radiomics. Quant Imaging Med Surg 11(6):2756–2765

    Article  Google Scholar 

  18. Tsukamoto T, Teramoto A, Yamada A, Kiriyama Y, Sakurai E, Michiba A, Imaizumi K, Fujita H (2022) Comparison of fine-tuned deep convolutional neural networks for the automated classification of lung cancer cytology images with integration of additional classifiers. Asian Pac J Cancer Prev 1–10

    Google Scholar 

  19. Teramoto A, Tsukamoto T, Kiriyama Y, Fujita H (2017) Automated classification of lung cancer types from cytological images using deep convolutional neural networks. BioMed Res Int 1–6

    Google Scholar 

  20. Baranwal N, Doravari P, Kachhoria R (2021) Classification of histopathology images of lung cancer using convolutional neural network (CNN). arXiv:2112.13553

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Mothkur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mothkur, R., Veerappa, B.N. (2023). Deep Learning-Based Three Type Classifier Model for Non-small Cell Lung Cancer from Histopathological Images. In: Kumar, S., Sharma, H., Balachandran, K., Kim, J.H., Bansal, J.C. (eds) Third Congress on Intelligent Systems. CIS 2022. Lecture Notes in Networks and Systems, vol 613. Springer, Singapore. https://doi.org/10.1007/978-981-19-9379-4_35

Download citation

Publish with us

Policies and ethics