Skip to main content

Impact of Electric Vehicle Charging Station in Distribution System Using V2G Technology

  • Conference paper
  • First Online:
Third Congress on Intelligent Systems (CIS 2022)

Abstract

The electrification of the transport sector is playing a vital role due to the depletion of the fossil fuels and emission of the carbon gases over the atmosphere, which leads to increase in the global warming. As a result, the usage of Electric Vehicles (EVs) is going to increase day by day in the transportation sector. Usage of EVs might reduce the pollution but it will increase the load on the grid, which further increases the losses in the power grid system. As the EV can act as a load and source with a bidirectional converter having dual mode of operation using Vehicle-to-Grid (V2G) Technology, which is going to act as a Distributed Generation (DG) during peak time of charging and as a load during off-peak time. In order to reduce the losses on the grid, modelling of EV charging behaviour is key to estimate the charging needs and beyond. In the proposed model, an IEEE 33-bus system integrated with four electric vehicle charging stations (EVCS) of 10th, 14th, 17th and 30th buses was considered to analyse the performance of the system. Also, to estimate the load demand of distribution system for a 24 h duration based on the load setting for the 33-bus system. The simulation results of the V2G model will show the reduction of losses in the distribution system using V2G method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. European Commission. Transport in Figures—Statistical Pocketbook (2011). Available online: https://ec.europa.eu/transport/facts-fundings/statistics/pocketbook-2011_en/. Accessed on 21 February 2021

  2. www.futurelearn.com/info/blog/electric-vehicles-future-transport

  3. thisiswhyiride.com/what-is-the-future-scope-of-electric-vehicle-inindia/

    Google Scholar 

  4. Geske M, Komarnicki P, Stötzer M, Styczynski ZA (2010) Modeling and simulation of electric car penetration in the distribution power system—case study. Modern Electric Power Syst 2010:1–6

    Google Scholar 

  5. Guille C, Gross G (2008) Design of a conceptual framework for the V2G Implementation. In: 2008 IEEE Energy 2030 conference, pp 1–3. https://doi.org/10.1109/ENERGY.2008.4781057

  6. Chukwu UC (2019) The impact of V2G on the distribution system: power factors and power loss issues. Southeast Con 2019:1–4. https://doi.org/10.1109/SoutheastCon42311.2019.9020481

    Article  Google Scholar 

  7. Habib S, Kamran M, Rashid U (2015). Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks—a review. J Power Sour 277. https://doi.org/10.1016/j.jpowsour.2014.12.020

  8. Malya P, Fiorini L, Rouhani M, Aiello M (2021) Electric vehicles as distribution grid batteries: a reality check. Energy Inf 4:29. https://doi.org/10.1186/s42162-021-00159-3

    Article  Google Scholar 

  9. Choi W et al (2017) Reviews on grid-connected inverter, utility-scaled battery energy storage system, and vehicle-to-grid application—challenges and opportunities. IEEE Transp Electr Conf Expo (ITEC) 2017:203–210. https://doi.org/10.1109/ITEC.2017.7993272

    Article  Google Scholar 

  10. www.newswire.ca/news-releases/hydro-quebec-launches-experimental-project-on-plug-in-vehicles-and-the-power-grid-v2g-v2h-gridbot-canada-selected-to-build-an-advanced-bidirectional-charging-station-510514651.Copyright © 2022 CNW Group Ltd. All Rights Reserved. A Cision company

  11. Kabalci Y (2016) A survey on smart metering and smart grid communication. Renew Sustain Energy Rev 57:302–318. https://doi.org/10.1016/j.rser.2015.12.114

    Article  Google Scholar 

  12. Bera S, Misra S, Rodrigues JJPC (2015) Cloud computing applications for smart grid: a survey. IEEE Trans Parallel Distrib Syst 26(5):1474–1494

    Google Scholar 

  13. Khurana H, Delgado-Gomes V, Martins JF, Lima C, Borza PN (2015) Smart grid security issues. In: 9th International conference on compatibility and power electronics (CPE)

    Google Scholar 

  14. Wang W, Lu Z (2013) Cyber security in the smart grid: survey and challenges, computer networks. Int J Comput Telecommun Netw 57(5):1344–1371

    Google Scholar 

  15. Khosrojerdi F, Taheri S, Taheri H, Pouresmaeil E (2016) Integration of electric vehicles into a smart power grid: a technical review. In: 2016 IEEE electrical power and energy conference (EPEC), IEEE, pp 1–6

    Google Scholar 

  16. Zhou Y (2015) Vehicle to grid technology: a review. https://doi.org/10.1109/ChiCC.2015.7261068

  17. Shariff SM, Iqbal D, Saad Alam M, Ahmad F (2019) Published under license by IOP Publishing Ltd IOP Conference Series: Materials Science and Engineering, Volume 561, First International Conference on Materials Science and Manufacturing Technology 12–13 April 2019, Hotel Aloft, Coimbatore, Tamil Nadu, India.

    Google Scholar 

  18. Wu B, Zhou J, Ji X, Yin Y, Shen X (2020) An ameliorated teaching–learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance. Inf Sci 533:72–107. ISSN 0020-0255. https://doi.org/10.1016/j.ins.2020.05.033

  19. Lance Noel, Gerardo Zarazua de Rubens, Johannes Kester, Benjamin K. Sovacool ,4 January 2018 • © 2018 The Author(s). Published by IOP Publishing Ltd. Environmental Research Letters, Volume 13, 2018 Environ. Res. Lett. 13 013001.

    Google Scholar 

  20. Baghmare KK, Daigavane PM () Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 2089, 1st International Conference on Applied Mathematics, Modeling and Simulation in Engineering (AMSE) 2021 15–16 September 2021, India (Virtual)Citation K K Baghmare and P M Daigavane 2021 J. Phys.: Conf. Ser. 2089 012011

    Google Scholar 

  21. Yiyun T, Can L, Lin C, Lin L (2011) Research on vehicle-to-grid technology. Int Conf Comput Distrib Control Intell Environ Monit 2011:1013–1016. https://doi.org/10.1109/CDCIEM.2011.194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golla Naresh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, G.N., Sudabattula, S.K., Maji, A., Reddy, C.J.V., Chaitanya, B.K. (2023). Impact of Electric Vehicle Charging Station in Distribution System Using V2G Technology. In: Kumar, S., Sharma, H., Balachandran, K., Kim, J.H., Bansal, J.C. (eds) Third Congress on Intelligent Systems. CIS 2022. Lecture Notes in Networks and Systems, vol 608. Springer, Singapore. https://doi.org/10.1007/978-981-19-9225-4_43

Download citation

Publish with us

Policies and ethics