Skip to main content

Abstract

Robotic process automation (RPA) is a contemporary breakthrough that automates repetitive, routine, and rule-based human activities to benefit businesses that choose to adopt such software. RPA is a commercially available technology, although there is little scientific research on the issue. As a result, the goal of this chapter is to examine how the academic community defines RPA and how much of its status, trends, and applications have been studied in the literature. The differences between RPA and business process management are also covered. The chapter offers the results of a systematic literature review (SLR) on RPA, including an overview of the terms and uses of RPA in real-world settings as well as the advantages of using RPA in different sectors of the economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

RPA:

Robotic process automation

CRM:

Customer Relationship Management

IT:

Information Technology

ITPA:

Information Technology Professionals Association

UI/UX:

User Interface/User Extensions

BPO:

Business Process Outsourcing

BPM:

Business process management

BPMS:

Business Process Management Systems

EHR:

Electronic Health Record

EMPI:

Enterprise-Wide Master Patient Index

ERP:

Enterprise Resource Planning

ECM:

Enterprise content management

SLRP:

Systematic Literature Research Protocol

HR:

Human Resource

CEO:

Chief Executive Officer

KPMG:

Klynveld Peat Marwick Goerdeler

HFS:

Hierarchical File System

References

  1. Kuffner, J. et al.: Online footstep planning for humanoid robots. In: Proceedings IEEE International Conference on Robotics and Automation, Vol. 1, The Grand Hotel, Taipei, Taiwan, 14–19 September 2003, pp. 932–937. IEEE Service Center. https://doi.org/10.1109/ROBOT.2003.1241712

  2. Hashimoto, S.: Humanoid robots in Waseda University Hadaly-2 and WABIAN. IARP First International Workshop on Humanoid and Human Friendly Robotics, pp. 1–10 (1998). https://doi.org/10.1023/A:1013202723953

  3. Pratt, J., Pratt, G.: intuitive control of a planar bipedal walking robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ‘98), Leuven, Belgium, 16–20 May 1998, pp. 1–12. IEEE Service Center, ISBN 0–7803–4300-X

    Google Scholar 

  4. Zeglin, G.J., Uniroo, A.: One-Legged Dynamic Hopping Robot. Master’s Thesis, Massachusetts Institute of Technology (1991)

    Google Scholar 

  5. Chestnutt, J. et al.: Footstep planning for The Honda ASIMO humanoid. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 629–634 (2005). https://doi.org/10.1109/ROBOT.2005.1570188

  6. Yanase, T., Iba, H.: Evolutionary motion design for humanoid robots. In: GECCO ‘06 Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA, 08–12 July 2006, pp. 1825–1832. ACM, New York, NY, USA. https://doi.org/10.1145/1143997.1144291

  7. Feng, S. et al.: Optimization based controller design and implementation for the atlas robot in the DARPA robotics challenge finals. In: IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea, 3–5 November, 2015, pp. 1028–1035. IEEE. https://doi.org/10.1109/HUMANOIDS.2015.7363480

  8. Feng, S. et al.: Optimization based full body control for the atlas robot. In: IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 18–20 November 2014, pp. 120–127. IEEE. https://doi.org/10.1109/HUMANOIDS.2014.7041347

  9. Du, C., Lee, K.H., Newman, W.: Manipulation planning for the atlas humanoid robot. In: IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia, 5–10 December 2014, pp. 1118–1123. IEEE. https://doi.org/10.1109/ROBIO.2014.7090482

  10. Long, X. et al.: Task-oriented planning algorithm for humanoid robots based on a foot repositionable inverse kinematics engine. In: IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November, 2016, pp. 1114–1120. IEEE. https://doi.org/10.1109/HUMANOIDS.2016.7803410

  11. Yang, Y. et al.: iDRM: humanoid motion planning with real time end-pose selection in complex environments. In: IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, IEEE, 15–17 November, 2016, pp. 271–278. https://doi.org/10.1109/HUMANOIDS.2016.7803288

  12. Chestnutt, J. et al.: Locomotion among dynamic obstacles for the honda ASIMO. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007, pp. 2572–2573. IEEE. https://doi.org/10.1109/IROS.2007.4399431

  13. Claudio, G., Spindler, F., Chaumette, F.: Vision-based manipulation with the humanoid robot romeo. In: IEEERAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November, 2016, pp. 286–293. IEEE. https://doi.org/10.1109/HUMANOIDS.2016

  14. Mao, X., He, H., Li, W.: Path finding for a NAO humanoid robot by fusing visual and proximity sensors. In: 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 12–15 June, 2016, pp. 2574–2579. IEEE. https://doi.org/10.1109/WCICA.2016.7578365

  15. Heaston, J. et al.: STriDER: self-excited tripedal dynamic experimental robo. In: IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007, pp. 2776–2777. IEEE. https://doi.org/10.1109/ROBOT.2007.363891

  16. Arikawa, K., Hirose, S.: Development of quadruped walking robot TITAN-VIII. In: Intelligent Robots and Systems ‘96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on, Vol. 1, Osaka, Japan, 8–8 November 1996, pp. 208–214. IEEE. https://doi.org/10.1109/IROS.1996.570670

  17. Kurazume, R. et al.: Experimental study on energy efficiency for quadruped walking vehicles. Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, pp. 613–618 (2003).https://doi.org/10.1109/IROS.2003.1250697

  18. Wooden, D. et al.: Autonomous navigation for BigDog. In: IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010, pp. 4736–4741, IEEE. https://doi.org/10.1109/ROBOT.2010.5509226

  19. Raibert, M. et al.: Bigdog, therough-terrain quadruped robot. Proceedings of the 17th World Congress the International Federation of Automatic Control, Seoul, Korea, 6–11 July 2008. https://doi.org/10.3182/20080706-5-KR-1001.01833

  20. Kang, T. et al.: Design of quadruped walking and climbing robot. Proceedings of the 2003 IEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27–31 October 2003, pp. 619–624. IEEE. https://doi.org/10.1109/IROS.2003.1250698

  21. Hirose, S., et al.: Quadruped walking robots at tokyo institute of technology. IEEE Robot. Autom. Mag. 2, 104–114 (2009). https://doi.org/10.1109/MRA.2009.932524

    Article  Google Scholar 

  22. Quinlan, M.J., Chalup, S.K., Middleton, R.H.: Techniques for improving vision and locomotion on the sony AIBO robot. In: Proceedings of the 2003 Australasian Conference on Robotics and Automation, Brisbane, Australia, 1–3 December 2003

    Google Scholar 

  23. Besari, A.R.A. et al.: The study on optimal gait for five-legged robot with reinforcement learning. Lect Notes Artif Int. Vol. 5928, pp. 1170–1175 Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-64210817-4_114

  24. Dhatterwal, J.S., Kaswan, K.S., Jaglan, V., Vij, A.: Machine learning and deep learning algorithms for IoD. In: Book Entitled “Internet of Drones: Opportunities and Challenges” in “Apple Academic Press (AAP), Canada, Published, Hard (2022). ISBN: 9781774639856

    Google Scholar 

  25. Delgado, D. et al.: Statically stable hexapod robot body construction. IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), 1998, Vilnius, Lithuania, 10–12 November 2016, pp. 1–4.https://doi.org/10.1109/AIEEE.2016.7821819

  26. Skaburskyte, A. et al.: Hexapod_robot gait stability investigation. IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 10–12 November 2016. https://doi.org/10.1109/AIEEE.2016.7821803

  27. Stoica, A. et al.: Cassino hexapod: experiences and new leg design. IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6 (2010). https://doi.org/10.1109/AQTR.2010.5520756

  28. Preety, K.S.K., Dhatterwal, J.S.: Fog or edge-based multimedia data computing and storage policies. In: Book entitled “Recent advances in Multimedia Computing System and Virtual Reality”, Published by Routledge Taylor & Francis Group, ISBN No. 9781032048,239 (2021)

    Google Scholar 

  29. Schiele, A. et al.: Nano Khod exploration rover—a rugged rover suited for small, low-cost, planetary lander mission. IEEE Robot. Autom. Mag. 15(2), 96–107 (2008).https://doi.org/10.1109/MRA.2008.917888

  30. Kaswan, K.S., Dhatterwal, J.S., Gaur, N.K.: Blockchain of iot based earthquake alarming system in smart cities, book entitled “Integration and Implementation of the Internet of Things Through Cloud Computing”, Published in IGI Global, ISBN 13: 9781799869818, ISBN10: 1799869814, EISBN14: 9781799869832 (2021)

    Google Scholar 

  31. https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2016/

  32. Dhatterwal, J.S., Kaswan, K.S., Preety: Intelligent agent based case base reasoning systems build knowledge representation in Covid-19 analysis of recovery infectious patients. in book entitled “Application of AI in COVID 19” published in Springer series: Medical Virology: From Pathogenesis to Disease Control, July 2020, ISBN No. 978–981–15–7317–0 (e-Book), 978–981–15–7316–3 (Hard Book). https://doi.org/10.1007/978-981-15-7317-0

  33. Tadakuma, K. et al.: Mechanical design of the wheel-leg hybrid mobile robot to realize a large wheel diameter. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE Service Center, Taipei, Taiwan, 18–22 October, 2010, pp. 3358–3365. https://doi.org/10.1109/IROS.2010.5651912

  34. Vargas, G.A. et al.: Simulation of a wheel leg hybrid robot in webots. In: IEEE Colombian Conference on Robotics and Automation (CCRA), IEEE, Bogota, Colombia, 29– 30 September 2016, pp. 1–5. https://doi.org/10.1109/CCRA.2016.7811403

  35. https://www.who.int/data/collections

  36. Yokota, S. et al.: Control law for rough terrain robot with leg-type crawler. Proceedings of the IEEE International conference on mechatronics and automation, IEEE, Luoyang, Henan, China, 25–28 June 2006, pp. 417–422

    Google Scholar 

  37. Kim, J. et al.: A wheel &track hybrid robot platform for optimal navigation in an urban environment. In: Proceedings of the SICE annual conference, IEEE, 2010, Taipei, Taiwan, 18–21 August 2010, pp. 881–884

    Google Scholar 

  38. Michaud, F., et al.: Multi-modal locomotion robotic platform using leg-track-wheel articulations. Auton. Robot. 18, 137–156 (2005)

    Article  Google Scholar 

  39. Paul, J.: Military robots and drones: a reference handbook, Springer: ABC-CLIO, 2013, ISBN: 978-1-59884-732-1

    Google Scholar 

  40. Wang, Y., et al.: A new redundancy resolution for underwater vehicle-manipulator system considering payload. Int. J. Adv. Robot. Syst. 14(5), 1–10 (2017)

    Article  Google Scholar 

  41. Kamamichi, N. et al.: A snake-like swimming robot using IPMC actuator/sensor. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, IEEE, ICRA, Orlando, FL, USA, 15–19 May 2006, pp. 1812–1817. https://doi.org/10.1109/ROBOT.2006.1641969

  42. https://data.world/datasets/automation

  43. Klaassen, B., Paap, K.L.: GMD-SNAKE2: a snake-like robot driven by wheels and a method for motion control. In: Proceedings. 1999 IEEE International Conference on Robotics and Automation, Vol. 4, Detroit, MI, USA, 10–15 May 1999, pp. 3014–3301. https://doi.org/10.1109/ROBOT.1999.774055

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Singh Kaswan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhatterwal, J.S., Kaswan, K.S., Kumar, N. (2023). Robotic Process Automation in Healthcare. In: Bhattacharyya, S., Banerjee, J.S., De, D. (eds) Confluence of Artificial Intelligence and Robotic Process Automation. Smart Innovation, Systems and Technologies, vol 335. Springer, Singapore. https://doi.org/10.1007/978-981-19-8296-5_7

Download citation

Publish with us

Policies and ethics