Skip to main content

PredXGBR: A Machine Learning Based Short-Term Electrical Load Forecasting Architecture

  • Conference paper
  • First Online:
Proceedings of International Conference on Information and Communication Technology for Development

Abstract

The increase of consumer end load demand is leading to a path to the smart handling of power sector utility. In recent era, the civilization has reached to such a pinnacle of technology that there is no scope of energy wastage. Consequently, questions arise on power generation sector. To prevent both electricity shortage and wastage, electrical load forecasting becomes the most convenient way out. Artificial Intelligent, Conventional and Probabilistic methods are employed in load forecasting. However the conventional and probabilistic methods are less adaptive to the acute, micro and unusual change of the demand trend. With the recent development of Artificial intelligence, machine learning has become the most popular choice due to its higher accuracy based on time, demand and trend based feature extractions. Even though machine learning based models have got the potential, most of the contemporary research works lack in precise and factual feature extractions which results in lower accuracy and higher convergence time. Thus the proposed model takes into account the extensive features derived from both long and short time lag based auto-correlation. Also, for an accurate prediction from these extracted features two Extreme Gradient Boosting (XGBoost) Regression based models: (i) PredXGBR-1 and (ii) PredXGBR-2 have been proposed with definite short time lag feature to predict hourly load demand. The proposed model is validated with five different historical data record of various zonal area over a twenty years of-2 time span. The average accuracy \((R^2\)) of PredXGBR-1 and PredXGBR-2 are 61.721% and 99.0982% with an average MAPE (error) of 8.095% and 0.9101% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saqib N, Haque KF, Zabin R, Preonto SN (2019) Analysis of grid integrated PV system as home RES with net metering scheme. In: 2019 international conference on robotics, electrical and signal processing techniques (ICREST), pp 395–399. https://doi.org/10.1109/ICREST.2019.8644098

  2. Singh AK, Khatoon S, Muazzam M, Chaturvedi D et al (2012) Load forecasting techniques and methodologies: a review. In: 2012 2nd international conference on power, control and embedded systems. IEEE, pp 1–10

    Google Scholar 

  3. Lusis P, Khalilpour KR, Andrew L, Liebman A (2017) Short-term residential load forecasting: impact of calendar effects and forecast granularity. Appl Energy 205:654–669

    Article  Google Scholar 

  4. Zhang L, Wen J, Li Y, Chen J, Ye Y, Fu Y, Livingood W (2021) A review of machine learning in building load prediction. Appl Energy 285:116452

    Article  Google Scholar 

  5. Haque KF, Zabin R, Yelamarthi K, Yanambaka P, Abdelgawad A (2020) An IoT based efficient waste collection system with smart bins. In: 2020 IEEE 6th world forum on internet of things (WF-IoT), pp 1–5. https://doi.org/10.1109/WF-IoT48130.2020.9221251

  6. Chen K, Chen K, Wang Q, He Z, Hu J, He J (2018) Short-term load forecasting with deep residual networks. IEEE Trans Smart Grid 10(4):3943–3952

    Article  Google Scholar 

  7. Aly HH (2020) A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid. Electr Power Syst Res 182:106191

    Article  Google Scholar 

  8. Singh S, Hussain S, Bazaz MA (2017) Short term load forecasting using artificial neural network. In: 2017 fourth international conference on image information processing (ICIIP). IEEE, pp 1–5

    Google Scholar 

  9. Marino DL, Amarasinghe K, Manic M (2016) Building energy load forecasting using deep neural networks. In: IECON 2016-42nd annual conference of the IEEE Industrial Electronics Society. IEEE, pp 7046–7051

    Google Scholar 

  10. Ageng D, Huang CY, Cheng RG (2021) A short-term household load forecasting framework using LSTM and data preparation. IEEE Access 9:167911–167919

    Article  Google Scholar 

  11. Bashir T, Haoyong C, Tahir MF, Liqiang Z (2022) Short term electricity load forecasting using hybrid prophet-LSTM model optimized by BPNN. Energy Rep 8:1678–1686

    Article  Google Scholar 

  12. Yang J, Zhang X, Bao Y (2021) Short-term load forecasting of central China based on DPSO-LSTM. In: 2021 IEEE 4th international electrical and energy conference (CIEEC). IEEE, pp. 1–5

    Google Scholar 

  13. Amarasinghe K, Marino DL, Manic M (2017) Deep neural networks for energy load forecasting. In: 2017 IEEE 26th international symposium on industrial electronics (ISIE). IEEE, pp 1483–1488

    Google Scholar 

  14. Alhussein M, Aurangzeb K, Haider SI (2020) Hybrid CNN-LSTM model for short-term individual household load forecasting. IEEE Access 8:180544–180557

    Article  Google Scholar 

  15. Wang Y, Sun S, Chen X, Zeng X, Kong Y, Chen J, Guo Y, Wang T (2021) Short-term load forecasting of industrial customers based on SVMD and XGBoost. Int J Electr Power Energy Syst 129:106830

    Google Scholar 

  16. Zheng H, Yuan J, Chen L (2017) Short-term load forecasting using EMD-LSTM neural networks with a XGBoost algorithm for feature importance evaluation. Energies 10(8). https://www.mdpi.com/1996-1073/10/8/1168

  17. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 785–794

    Google Scholar 

  18. Loh WY (2011) Classification and regression trees. Wiley Interdisc Rev Data Min Knowl Discov 1(1):14–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rifat Zabin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zabin, R., Barua, L., Ahmed, T. (2023). PredXGBR: A Machine Learning Based Short-Term Electrical Load Forecasting Architecture. In: Ahmad, M., Uddin, M.S., Jang, Y.M. (eds) Proceedings of International Conference on Information and Communication Technology for Development. Studies in Autonomic, Data-driven and Industrial Computing. Springer, Singapore. https://doi.org/10.1007/978-981-19-7528-8_42

Download citation

Publish with us

Policies and ethics