Skip to main content

Gamma-Ray Polarimetry

  • Reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics

Abstract

While the scientific potential of high-energy X-ray and gamma-ray polarimetry has long been recognized, measuring the polarization of high-energy photons is challenging. To date, there have been very few significant detections from an astrophysical source. However, recent technological developments raise the possibility that this may change in the not-too-distant future. Significant progress has been made in the development of gamma-ray burst (GRB) polarimeters and polarization-sensitive Compton telescopes. A second-generation dedicated GRB polarimeter, POLAR-2, is under development for launch in 2024, and COSI, a second-generation polarization sensitive Compton telescope, has been selected by NASA for launch in 2025. This chapter reviews basic concepts and experimental approaches to scattering polarimetry of hard X-rays to MeV γ-rays and pair production polarimetry of higher-energy photons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Q. Abarr, M. Baring et al., Observations of a GX 301-2 Apastron Flare with the X-Calibur Hard X-Ray Polarimeter Supported by NICER, the Swift XRT and BAT, and Fermi GBM. Astrophys. J. 891(1), 70 (2020). https://doi.org/10.3847/1538-4357/ab672c, 2001.03581

  • Q. Abarr, H. Awaki et al., XL-Calibur – a second-generation balloon-borne hard X-ray polarimetry mission. Astropart. Phys. 126, 102529 (2021). https://doi.org/10.1016/j.astropartphys.2020.102529, 2010.10608

  • S. Agostinelli et al., GEANT4–a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

  • P.C. Agrawal, A broad spectral band Indian Astronomy satellite ‘Astrosat’. Adv. Space Res. 38, 2989–2994 (2006). https://doi.org/10.1016/j.asr.2006.03.038

    ADS  Google Scholar 

  • F. Aharonian, H. Akamatsu et al., Detection of polarized gamma-ray emission from the crab nebula with the hitomi soft gamma-ray detector†. Publ. Astron. Soc. Jpn. 70(6) (2018). https://doi.org/10.1093/pasj/psy118

  • M. Amman, P.N. Luke, Three-dimensional position sensing and field shaping in orthogonal-strip germanium gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. A 452(1–2), 155–166 (2000). https://doi.org/10.1016/S0168-9002(00)00351-X

    ADS  Google Scholar 

  • S. Anvar, P. Baron et al., Aget, the get front-end asic, for the readout of the time projection chambers used in nuclear physic experiments, in 2011 IEEE Nuclear Science Symposium Conference Record (2011), pp. 745–749. https://doi.org/10.1109/NSSMIC.2011.6154095

  • E. Aprile, K.L. Giboni, C. Rubbia, A study of ionization electrons drifting large distances in liquid and solid argon. Nucl. Instrum. Methods Phys. Res. A 241(1), 62–71 (1985). https://doi.org/10.1016/0168-9002(85)90516-9

  • T. Bai, R. Ramaty, Backscatter, anisotropy, and polarization of solar hard X-rays. Astrophys. J. 219, 705–726 (1978). https://doi.org/10.1086/155830

    ADS  Google Scholar 

  • M.G. Baring, A.K. Harding, Resonant compton upscattering in anomalous X-ray pulsars (2006). astro-ph/0610382

    Google Scholar 

  • N.M. Barrière, L. Natalucci, P. Ubertini, Hard x/soft gamma ray polarimetry using a laue lens (2011). 1109.1313

    Google Scholar 

  • D.B. Beard, M.E. Rose, Circular polarization detection of gamma rays. Phys. Rev. 108(1), 164–165 (1957). https://doi.org/10.1103/PhysRev.108.164

    ADS  Google Scholar 

  • M. Beilicke, F. Kislat et al., Design and performance of the X-ray polarimeter X-Calibur. J. Astron. Instrum. 3, 1440008 (2014). https://doi.org/10.1142/S225117171440008X, 1412.6457

  • M. Beilicke, F. Kislat et al., First flight of the x-ray polarimeter x-calibur, in 2015 IEEE Aerospace Conference (2015), pp. 1–10. https://doi.org/10.1109/AERO.2015.7118915

  • A.M. Beloborodov, On the mechanism of hard x-ray emission from magnetars. Astrophys. J. 762(1), 13 (2012). https://doi.org/10.1088/0004-637x/762/1/13

  • M. Berger et al., XCOM: photon cross sections database, NIST standard reference database 8 (XGAM) (2021). https://www.nist.gov/pml/xcom-photon-cross-sections-database

    Google Scholar 

  • D. Bernard, Polarimetry of cosmic gamma-ray sources above e+e pair creation threshold. Nucl. Instrum. Methods Phys. Res. A 729, 765–780 (2013). https://doi.org/10.1016/j.nima.2013.07.047, 1307.3892

  • D. Bernard, A 5D, polarised, Bethe-Heitler event generator for \(\gamma \rightarrow e^{+}e^{-}\) conversion. Nucl. Instrum. Methods Phys. Res. A 899, 85–93 (2018). https://doi.org/10.1016/j.nima.2018.05.021, 1802.08253

  • D. Bernard, Characterizing the performance of the MeV gamma-ray telescopes and polarimeters of the future, in The 12th INTEGRAL Conference and 1st AHEAD Gamma-Ray Workshop, Geneva, 11–15 Feb 2019 (2019a)

    Google Scholar 

  • D. Bernard, HARPO, a gas TPC active target for high-performance γ-ray astronomy; demonstration of the polarimetry of MeV γ-rays converting to e+e pair. Nucl. Instrum. Methods Phys. Res. A 936, 405–407 (2019b). https://doi.org/10.1016/j.nima.2018.10.016, 1805.10003

  • D. Bernard, Pair invariant mass spectrum and polarization asymmetry in the event generation of gamma-ray conversions. Nucl. Instrum. Methods Phys. Res. A 997, 165163 (2021). https://doi.org/10.1016/j.nima.2021.165163, 2102.00985

  • D. Bernard, P. Bruel et al., HARPO: a TPC as a gamma-ray telescope and polarimeter. in Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, ed. by T. Takahashi, J.W.A. den Herder M. Bautz. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9144 (2014), p. 91441M. https://doi.org/10.1117/12.2055307, 1406.4830

  • H. Bethe, W. Heitler, On the stopping of fast particles and on the creation of positive electrons. Proc. R. Soc. London, Ser. A 146(856), 83–112 (1934). https://doi.org/10.1098/rspa.1934.0140

  • V. Bhalerao, D. Bhattacharya et al., The Cadmium Zinc Telluride Imager on AstroSat. J. Astrophys. Astron. 38(2), 31 (2017). https://doi.org/10.1007/s12036-017-9447-8, 1608.03408

  • D. Bhattacharya, T.J. O’Neill et al., Prototype TIGRE Compton γ-ray balloon-borne telescope. New Astron. Rev. 48(1–4), 287–292 (2004). https://doi.org/10.1016/j.newar.2003.11.033

    ADS  Google Scholar 

  • P.F. Bloser, J.M. Ryan et al., The MEGA project: science goals and hardware development. New Astron. Rev. 50(7–8), 619–623 (2006). https://doi.org/10.1016/j.newar.2006.06.001

    ADS  Google Scholar 

  • P.F. Bloser, J.S. Legere et al.,Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam. Nucl. Instrum. Methods Phys. Res. A 600, 424–433 (2009). https://doi.org/10.1016/j.nima.2008.11.118, 0812.0782

  • A.V. Bogomolov, Y.I. Denisov et al., Hard X-ray radiation from solar flares in the second half of 2001: preliminary results of the SPR-N experiment onboard the coronas-F satellite. Sol. Syst. Res. 37(2), 112–120 (2003)

    ADS  Google Scholar 

  • V.F. Boldyshev, Y.P. Peresunko, Electron-positron pair photoproduction on electrons and analysis of photon beam polarization. Yad Fiz 14, 1027–1032 (1971)

    Google Scholar 

  • V.F. Boldyshev, E.A. Vinokurov et al., Measurement of linear polarization of photons by using the asymmetry of recoil electrons in the photoproduction of triplets. Phys. At. Nucl. 58(1), 39–45 (1995)

    Google Scholar 

  • L. Bombelli, C. Fiorini, M. Porro, Fast depfet current readout for x-ray astronomy missions. Nucl. Instrum. Methods Phys. Res. A 604(3), 679–683 (2009). https://doi.org/10.1016/j.nima.2009.03.022. http://www.sciencedirect.com/science/article/pii/S0168900209004446

  • J.H. Buckley et al., The Advanced Particle-astrophysics Telescope (APT) Project Status. PoS ICRC 2021, 655 (2021). https://doi.org/10.22323/1.395.0655

    Google Scholar 

  • J.M. Burgess, M. Kole et al., Time-resolved GRB polarization with POLAR and GBM. Simultaneous spectral and polarization analysis with synchrotron emission. Astron. Astrophys. 627, A105 (2019). https://doi.org/10.1051/0004-6361/201935056, 1901.04719

  • G.A. Caliandro, B. Rossi et al., A new concept of y-ray telescope. LArGO: Liquid Argon Gamma-ray Observatory (2013). arXiv e-prints arXiv:1312.4503, 1312.4503

    Google Scholar 

  • E. Caroli, M. Moita et al., Hard X-ray and Soft Gamma Ray Polarimetry with CdTe/CZT Spectro-Imager. Galaxies 6(3), 69 (2018). https://doi.org/10.3390/galaxies6030069

  • A. Celotti, G. Matt, Polarization properties of synchrotron self-compton emission. Mon. Not. R. Astron. Soc. 268, 451 (1994)

    ADS  Google Scholar 

  • T. Chattopadhyay, Hard X-ray polarimetry—an overview of the method, science drivers, and recent findings. J. Astrophys. Astron. 42(2), 106 (2021). https://doi.org/10.1007/s12036-021-09769-5, 2104.05244

  • T. Chattopadhyay, S.V. Vadawale, J. Pendharkar, Compton polarimeter as a focal plane detector for hard X-ray telescope: sensitivity estimation with Geant4 simulations. Exp. Astron. 35, 391–412 (2013). https://doi.org/10.1007/s10686-012-9312-3

    ADS  Google Scholar 

  • T. Chattopadhyay, S.V. Vadawale, M. Shanmugam, S.K. Goyal, Measurement of low energy detection efficiency of a plastic scintillator: implications on the lower energy limit and sensitivity of a hard X-ray focal plane compton polarimeter. Astrophys. J. Suppl. 212, 12 (2014a). https://doi.org/10.1088/0067-0049/212/1/12

  • T. Chattopadhyay, S.V. Vadawale et al., Prospects of hard X-ray polarimetry with Astrosat-CZTI. Exp. Astron. 37, 555–577 (2014b). https://doi.org/10.1007/s10686-014-9386-1

  • T. Chattopadhyay, S. Vadawale et al., Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and si photomultipliers. Exp. Astron. 1–18 (2015). https://doi.org/10.1007/s10686-015-9481-y

  • T. Chattopadhyay, A.D. Falcone et al., X-ray hybrid cmos detectors: recent development and characterization progress, in Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, vol. 10709 (2018)

    Google Scholar 

  • T. Chattopadhyay, S.V. Vadawale et al., Prompt emission polarimetry of gamma-ray bursts with the AstroSat CZT imager. Astrophys. J. 884(2), 123 (2019). https://doi.org/10.3847/1538-4357/ab40b7, 1707.06595

  • M. Chauvin, J.P. Roques, D.J. Clark, E. Jourdain, Polarimetry in the Hard X-Ray Domain with INTEGRAL SPI. Astrophys. J. 769, 137 (2013). https://doi.org/10.1088/0004-637X/769/2/137, 1305.0802

  • M. Chauvin, M. Jackson et al., Optimising a balloon-borne polarimeter in the hard X-ray domain: from the PoGOLite Pathfinder to PoGO+. Astropart. Phys. 82, 99–107 (2016). https://doi.org/10.1016/j.astropartphys.2016.06.005, 1606.04504

  • M. Chauvin, M. Jackson et al., Preflight performance studies of the pogolite hard x-ray polarimeter. Astropart. Phys. 72, 1–10 (2016). https://doi.org/10.1016/j.astropartphys.2015.05.003, http://www.sciencedirect.com/science/article/pii/S0927650515000833

  • M. Chauvin, H.G. Florén et al., Accretion geometry of the black-hole binary Cygnus X-1 from X-ray polarimetry. Nat. Astron. 2, 652–655 (2018a). https://doi.org/10.1038/s41550-018-0489-x, 1812.09907

  • M. Chauvin, H.G. Florén et al., The PoGO+ view on Crab off-pulse hard X-ray polarization. Mon. Not. R. Astron. Soc. 477(1), L45–L49 (2018b). https://doi.org/10.1093/mnrasl/sly027, 1802.07775

  • M. Chauvin, H.G. Florén et al., PoGO+ polarimetric constraint on the synchrotron jet emission of Cygnus X-1. Mon. Not. R. Astron. Soc. 483(1), L138–L143 (2019). https://doi.org/10.1093/mnrasl/sly233, 1812.03244

  • K.S. Cheng, M. Ruderman, L. Zhang, A three-dimensional outer magnetospheric gap model for gamma-ray pulsars: geometry, pair production, emission morphologies, and phase-resolved spectra. Astrophys. J. 537, 964–976 (2000). https://doi.org/10.1086/309051

    ADS  Google Scholar 

  • F.P. Clay, F.L. Hereford, The scattering of 0.5-Mev circularly polarized photons in magnetized iron. Phys. Rev. 85(4), 675–676 (1952). https://doi.org/10.1103/PhysRev.85.675

  • W. Coburn, S. Amrose et al., 3D positioning germanium detectors for gamma-ray astronomy, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4784 (2003), pp. 54–63. https://doi.org/10.1117/12.450828

  • S. Covino, D. Gotz,Polarization of prompt and afterglow emission of Gamma-Ray Bursts. Astron. Astrophys. Trans. 29, 205–244 (2016). 1605.03588

    ADS  Google Scholar 

  • J.K. Daugherty, A.K. Harding, Electromagnetic cascades in pulsars. Astrophys. J. 252, 337–347 (1982). https://doi.org/10.1086/159561

    ADS  Google Scholar 

  • A. De Angelis, V. Tatischeff et al., The e-ASTROGAM mission. Exploring the extreme Universe with gamma rays in the MeV – GeV range. Exp. Astron. 44(1), 25–82 (2017). https://doi.org/10.1007/s10686-017-9533-6, 1611.02232

  • A. De Angelis, V. Tatischeff et al., Science with e-astrogam. J. High Energy Astrophys. 19, 1–106 (2018). https://doi.org/10.1016/j.jheap.2018.07.001

    ADS  Google Scholar 

  • N. De Angelis, Development and science perspectives of the POLAR-2 instrument: a large scale GRB polarimeter. PoS ICRC 2021, 580 (2021). https://doi.org/10.22323/1.395.0580

    Google Scholar 

  • C. de Jager, B. Wojtsekhowski et al., A pair polarimeter for linearly polarized high energy photons. Eur. Phys. J. A 19(S1), 275–278 (2004). https://doi.org/10.1140/epjad/s2004-03-045-5, physics/0702246

  • V.A. Dergachev, G.A. Matveev et al., Hard X-ray compton polarimetry with the PENGUIN-M instrument in the spaceborne experiment CORONAS-PHOTON. Bull. Russ. Acad. Sci. Phys. 73(3), 419–421 (2009). https://doi.org/10.3103/S1062873809030423

    Google Scholar 

  • J. Dyks, B. Rudak, Two-pole caustic model for high-energy light curves of pulsars. Astrophys. J. 598, 1201–1206 (2003). https://doi.org/10.1086/379052, astro-ph/0303006

  • M. Eingorn, L. Fernando et al., High-energy photon polarimeter for astrophysics. J.Astron. Telesc. Instrum. Syst. 4, 011006 (2018). https://doi.org/10.1117/1.JATIS.4.1.011006, 1501.05592

  • A. Elagin, J. Kumar, P. Sandick, F. Teng, Prospects for detecting a net photon circular polarization produced by decaying dark matter. Phys. Rev. D 96(9), 096008 (2017). https://doi.org/10.1103/PhysRevD.96.096008, 1709.03058

  • J.A. Esposito, D.L. Bertsch et al., In-flight calibration of EGRET on the compton gamma-ray observatory. Astrophys. J. Suppl. Ser. 123(1), 203–217 (1999). https://doi.org/10.1086/313227

    ADS  Google Scholar 

  • R.D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955)

    Google Scholar 

  • M. Forot, P. Laurent, I.A. Grenier, C. Gouiffès, F. Lebrun, Polarization of the crab pulsar and nebula as observed by the INTEGRAL/IBIS telescope. Astrophys. J. Lett. 688, L29–L32 (2008). https://doi.org/10.1086/593974, 0809.1292

  • M. Friis, M. Kiss et al., The PoGO+ Ballon-Borne hard X-ray polarimetry mission. Galaxies 6(1), 30 (2018). https://doi.org/10.3390/galaxies6010030, 1803.02106

  • R. Fruhwirth, Application of Kalman filtering to track and vertex fitting. Nucl. Instrum. Methods A 262, 444–450 (1987). https://doi.org/10.1016/0168-9002(87)90887-4

  • G.I. Gakh, M.I. Konchatnij, I.S. Levandovsky, N.P. Merenkov, About the possibility to measure the circular polarization of high-energyphoton in reaction gamma + e- —> e+ + e- + e-. Prob. Atomic Sci. Technol. 2012N1, 97–101 (2012)

    Google Scholar 

  • R. Gill, M. Kole, J. Granot, GRB polarization: a unique probe of GRB physics (2021). arXiv e-prints arXiv:2109.03286, 2109.03286

    Google Scholar 

  • M. Giomi, R. Bühler, C. Sgrò, F. Longo, W.B. Atwood, Estimate of the Fermi large area telescope sensitivity to gamma-ray polarization, in 6th International Symposium on High Energy Gamma-Ray Astronomy. American Institute of Physics Conference Series, vol. 1792 (2017), p. 070022. https://doi.org/10.1063/1.4969019, 1610.06729

  • J. Granot, A. Königl, Linear Polarization in Gamma-Ray Bursts: The Case for an Ordered Magnetic Field. Astrophys. J. Lett. 594, L83–L87 (2003). https://doi.org/10.1086/378733, arXiv:astro-ph/0304286

  • C.V. Griffith, A.D. Falcone, Z.R. Prieskorn, D.N. Burrows, The Speedster-EXD- a new event-driven hybrid CMOS X-ray detector. J. Astron. Telesc. Instrum. Syst. 2(1), 016001 (2016). https://doi.org/10.1117/1.JATIS.2.1.016001, 1602.07709

  • P. Gros, D. Bernard, γ-Ray polarimetry with conversions to e+e pairs: polarization asymmetry and the way to measure it. Astropart. Phys. 88, 30–37 (2017a). https://doi.org/10.1016/j.astropartphys.2016.12.006, 1611.05179

  • P. Gros, D. Bernard, γ-ray telescopes using conversions to e+e pairs: event generators, angular resolution and polarimetry. Astrop. Phys. 88, 60–67 (2017b). https://doi.org/10.1016/j.astropartphys.2017.01.002, 1612.06239

  • P. Gros, S. Amano et al., Performance measurement of HARPO: a time projection chamber as a gamma-ray telescope and polarimeter. Astrop. Phys. 97, 10–18 (2018). https://doi.org/10.1016/j.astropartphys.2017.10.008, 1706.06483

  • S. Gunji, Y. Kishimoto et al., The PHENEX experiment result, in Polarimetry Days in Rome: Crab Status, Theory and Prospects, Proceedings of Science, SISSA (2008), p. 5

    Google Scholar 

  • Q. Guo, M. Beilicke et al., Optimization of the design of the hard X-ray polarimeter X-Calibur. Astrop. Phys. 41, 63–72 (2013). https://doi.org/10.1016/j.astropartphys.2012.11.006, 1212.4509

  • A.K. Harding, C. Kalapotharakos, Multiwavelength polarization of rotation-powered Pulsars. Astrophys. J. 840(2), 73 (2017). https://doi.org/10.3847/1538-4357/aa6ead, 1704.06183

  • F.A. Harrison, F.E. Christensen et al., Development of the HEFT and NuSTAR focusing telescopes. Exp. Astron. 20, 131–137 (2005). https://doi.org/10.1007/s10686-006-9072-z

    ADS  Google Scholar 

  • K. Hayashida, D. Yonetoku et al., X-ray gamma-ray polarimetry small satellite PolariS, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9144 (2014), p. 0. https://doi.org/10.1117/12.2056685

  • J. Heyl, I. Caiazzo, Strongly magnetized sources: QED and X-ray polarization. Galaxies 6(3), 76 (2018). https://doi.org/10.3390/galaxies6030076, 1802.00358

  • W.C. Huang, K.W. Ng, T.C. Yuan, Circularly polarized gamma rays in effective dark matter theory. Phys. Lett. B 800, 135104 (2020). https://doi.org/10.1016/j.physletb.2019.135104, 1907.02402

  • S.D. Hunter et al., A pair production telescope for medium-energy gamma-ray polarimetry. Astropart. Phys. 59, 18–28 (2014). https://doi.org/10.1016/j.astropartphys.2014.04.002, 1311.2059

  • V. Ivanchenko et al., Geant4 electromagnetic physics progress. EPJ Web Conf. 245, 02009 (2020). https://doi.org/10.1051/epjconf/202024502009

    Google Scholar 

  • N.L.S. Jeffrey, E.P. Kontar, Spatially resolved hard X-ray polarization in solar flares: effects of compton scattering and bremsstrahlung. Astron. Astrophys. 536, A93 (2011). https://doi.org/10.1051/0004-6361/201117987, 1110.4993

  • E. Jourdain, J.P. Roques, 2003–2018 monitoring of the crab nebula polarization in hard x-rays with INTEGRAL SPI. Astrophys. J. 882(2), 129 (2019). https://doi.org/10.3847/1538-4357/ab3422

  • E. Jourdain, J.P. Roques, M. Chauvin, D.J. Clark, Separation of two contributions to the high energy emission of cygnus X-1: polarization measurements with INTEGRAL SPI. Astrophys. J. 761, 27 (2012). https://doi.org/10.1088/0004-637X/761/1/27, 1210.4783

  • D. Kantzas, S. Markoff et al., A new lepto-hadronic model applied to the first simultaneous multiwavelength data set for cygnus x − 1. Mon. Not. R. Astron. Soc. 500(2), 2112–2126 (2020). https://doi.org/10.1093/mnras/staa3349

    ADS  Google Scholar 

  • S. Kelner et al., Methods of measuring linear polarization of gamma quanta. Yad Fiz 21, 604 (1975)

    Google Scholar 

  • T. Kii, X-ray polarization from accreting strongly magnetized neutron stars :case studies for the X-ray pulsars 4U 1626-67 and Hercules X-1. Pub. Astron. Soc. Jpn. 39, 781–800 (1987)

    Google Scholar 

  • J.G. Kirk, O. Skjæraasen, Y.A. Gallant, Pulsed radiation from neutron star winds. Astron. Astrophys. 388, L29–L32 (2002). https://doi.org/10.1051/0004-6361:20020599, astro-ph/0204302

  • Y. Kishimoto, S. Gunji et al., Basic Performance of PHENEX: A Polarimeter for High ENErgy X rays. IEEE Trans. Nucl. Sci. 54, 561–566 (2007). https://doi.org/10.1109/TNS.2007.897827

    ADS  Google Scholar 

  • F. Kislat, B. Clark, M. Beilicke, H. Krawczynski, Analyzing the data from X-ray polarimeters with Stokes parameters. Astropart. Phys. 68, 45–51 (2015). https://doi.org/10.1016/j.astropartphys.2015.02.007, 1409.6214

  • F. Kislat, B. Beheshtipour et al., Design of the telescope truss and gondola for the balloon-borne X-ray polarimeter X-calibur. J. Astron. Instrum. 6(2), 1740003 (2017). https://doi.org/10.1142/S2251171717400037, 1701.04536

  • F. Kislat, Q. Abarr et al., Optimization of the design of X-Calibur for a long-duration balloon flight and results from a one-day test flight. J. Astron. Telesc. Instrum. Syst. 4, 011004 (2018). https://doi.org/10.1117/1.JATIS.4.1.011004

    ADS  Google Scholar 

  • H. Kolbenstvedt, H. Olsen, Circular photon polarization detection by pair production. Il Nuovo Cimento A 40, 13 (1965). https://doi.org/10.1007/BF02832908

    ADS  Google Scholar 

  • M. Kole, POLAR-2: the first large scale gamma-ray polarimeter. in 36th International Cosmic Ray Conference (ICRC2019). International Cosmic Ray Conference, vol. 36 (2019), p. 572

    Google Scholar 

  • M. Kole, N. De Angelis et al., The polar gamma-ray burst polarization catalog. Astron. Astrophys. 644, A124 (2020). https://doi.org/10.1051/0004-6361/202037915

    Google Scholar 

  • S. Komura et al., Imaging polarimeter for a Sub-MeV gamma-ray all-sky survey using an electron-tracking compton camera. Astrophys. J. 839(1), 41 (2017). https://doi.org/10.3847/1538-4357/aa68dc, 1703.07600

  • Y.D. Kotov, V.N. Yurov et al., Solar X-ray polarimetry and spectrometry instrument PING-M for the Interhelioprobe mission. Adv. Space Res. 58(4), 635–643 (2016). https://doi.org/10.1016/j.asr.2016.05.024

    ADS  Google Scholar 

  • H. Krawczynski, Analysis of the data from Compton X-ray polarimeters which measure the azimuthal and polar scattering angles. Astropart. Phys. 34(10), 784–788 (2011). https://doi.org/10.1016/j.astropartphys.2011.02.001, 1102.1228

  • H. Kunieda, H. Awaki et al., Hard x-ray telescope to be onboard ASTRO-H, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7732 (2010). https://doi.org/10.1117/12.856892

  • I. Kuvvetli, C. Budtz-Jørgensen et al., A 3D CZT high resolution detector for x- and gamma-ray astronomy, in High Energy, Optical, and Infrared Detectors for Astronomy VI, ed. by A.D. Holland, J. Beletic. International Society for Optics and Photonics, SPIE, vol. 9154 (2014) pp. 272–281. https://doi.org/10.1117/12.2055119

  • P. Laurent, J. Rodriguez et al., Polarized gamma-ray emission from the galactic black hole cygnus X-1. Science 332, 438–439 (2011). https://doi.org/10.1126/science.1200848, 1104.4282

  • J. Leach, A.G. Emslie, V. Petrosian, The interpretation of hard X-ray polarization measurements in solar flares. Solar Phys. 96(2), 331–337 (1985). https://doi.org/10.1007/BF00149688

    ADS  Google Scholar 

  • H.C. Li, N. Produit et al., Gamma-ray polarimetry of the Crab pulsar observed by POLAR. Mon. Not. R. Astron. Soc. 512, 2827–2840 (2021)

    ADS  Google Scholar 

  • A.W. Lowell, S.E. Boggs et al., Polarimetric analysis of the long duration gamma-ray burst GRB 160530A with the balloon borne compton spectrometer and imager. Astrophys. J. 848(2), 119 (2017). https://doi.org/10.3847/1538-4357/aa8ccb, 1709.05349

  • M. Lyutikov, V.I. Pariev, R.D. Blandford, Polarization of prompt gamma-ray burst emission: evidence for electromagnetically dominated outflow. Astrophys. J. 597, 998–1009 (2003). https://doi.org/10.1086/378497, astro-ph/0305410

  • M.M. May, On the polarization of high energy bremsstrahlung and of high energy pairs. Phys. Rev. 84(2), 265–270 (1951). https://doi.org/10.1103/PhysRev.84.265

    ADS  Google Scholar 

  • M.L. McConnell, High energy polarimetry of prompt GRB emission (2016). ArXiv e-prints 1611.06579

    Google Scholar 

  • M.L. McConnell, M. Baring et al., The LargE Area burst Polarimeter (LEAP) a NASA mission of opportunity for the ISS, in UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, ed. by O.H. Siegmund. International Society for Optics and Photonics, SPIE, vol. 11821 (2021), pp. 237–250. https://doi.org/10.1117/12.2594737

  • J. McEnery, J.A. Barrio et al., All-sky medium energy gamma-ray observatory: exploring the extreme multimessenger universe (2019). 1907.07558

    Google Scholar 

  • A.L. McNamara, Z. Kuncic, K. Wu, X-ray polarization in relativistic jets. Mon. Not. R. Astron. Soc. 395, 1507–1514 (2009). https://doi.org/10.1111/j.1365-2966.2009.14608.x, 0902.1562

  • M.V. Medvedev, A. Loeb, Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526(2), 697–706 (1999). https://doi.org/10.1086/308038, astro-ph/9904363

  • P. Meszaros, R. Novick, A. Szentgyorgyi, G.A. Chanan, M.C. Weisskopf, Astrophysical implications and observational prospects of X-ray polarimetry. Astrophys. J. 324, 1056–1067 (1988). https://doi.org/10.1086/165962

    ADS  Google Scholar 

  • W. Mi, P. Nillius, M. Pearce, M. Danielsson, A stacked prism lens concept for next-generation hard x-ray telescopes. Nat. Astron. 3(9), 867–872 (2019). https://doi.org/10.1038/s41550-019-0795-y

    ADS  Google Scholar 

  • A. Moiseev, All-Sky Medium Energy Gamma-ray Observatory (AMEGO). PoS ICRC 2019, 583 (2020). https://doi.org/10.22323/1.358.0583

    Google Scholar 

  • F. Muleri, R. Campana, Sensitivity of stacked imaging detectors to hard X-ray polarization. Astrophys. J. 751, 88 (2012). https://doi.org/10.1088/0004-637X/751/2/88, 1204.0681

  • E. Nakar, T. Piran, E. Waxman, Implications of the bold gamma-ray polarization of GRB 021206. J. Cosmol. Astropart. Phys. 10, 005 (2003). https://doi.org/10.1088/1475-7516/2003/10/005, astro-ph/0307290

  • C.Y. Ng, R.W. Romani, Fitting pulsar wind tori. Astrophys. J. 601, 479–484 (2004). https://doi.org/10.1086/380486, astro-ph/0310155

  • H. Olsen, Opening angles of electron-positron pairs. Phys. Rev. 131, 406–415 (1963). https://doi.org/10.1103/PhysRev.131.406

    ADS  Google Scholar 

  • H. Olsen, L.C. Maximon, Photon and electron polarization in high-energy bremsstrahlung and pair production with screening. Phys. Rev. 114, 887–904 (1959). https://doi.org/10.1103/PhysRev.114.887

    ADS  MathSciNet  Google Scholar 

  • H. Olsen, L.C. Maximon, Pair production as an analyser of circular polarization of γ rays from neutral particle decays. Il Nuovo Cimento 24, 186 (1962). https://doi.org/10.1007/BF02785772

    ADS  Google Scholar 

  • T.J. O’Neill, A. Akyüz et al., Tracking, imaging and polarimeter properties of the TIGRE instrument. Astron. Astrophys. Suppl. Ser. 120, 661–664 (1996)

    Google Scholar 

  • K. Ozaki, S. Takahashi et al., Demonstration of polarization sensitivity of emulsion-based pair conversion telescope for cosmic gamma-ray polarimetry. Nucl. Instrum. Methods Phys. Resl. A 833, 165–168 (2016). https://doi.org/10.1016/j.nima.2016.07.033, 1605.01516

  • J. Pétri, J.G. Kirk, The polarization of high-energy pulsar radiation in the striped wind model. Astrophys. J. Lett. 627, L37–L40 (2005). https://doi.org/10.1086/431973, astro-ph/0505427

  • N. Produit, T. Bao et al., Design and construction of the polar detector. Nucl. Instrum. Methods Phys. Res. A 877, 259–268 (2018). https://doi.org/10.1016/j.nima.2017.09.053

    ADS  Google Scholar 

  • A.R. Rao, V. Chand et al., AstroSat CZT Imager Observations of GRB 151006A: timing, spectroscopy, and polarization study. Astrophys. J. 833, 86 (2016). https://doi.org/10.3847/1538-4357/833/1/86

    ADS  Google Scholar 

  • J. Rauch, Pattern recognition in a high-rate GEM-TPC. J. Phys. Conf. Ser. 396, 022042 (2012). https://doi.org/10.1088/1742-6596/396/2/022042

    Google Scholar 

  • S.Y. Sazonov, R.A. Sunyaev, Scattering in the inner accretion disk and the waveforms and polarization of millisecond flux oscillations in LMXBs. Astron. Astrophys. 373, 241–250 (2001). https://doi.org/10.1051/0004-6361:20010624, astro-ph/0011352

  • J.D. Schnittman, J.H. Krolik, X-ray polarization from accreting black holes: coronal emission. Astrophys. J. 712, 908–924 (2010). https://doi.org/10.1088/0004-637X/712/2/908, 0912.0907

  • V. Schoenfelder, H. Aarts et al., Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the compton gamma-ray observatory. Astrophys. J. Suppl. 86, 657 (1993). https://doi.org/10.1086/191794

    ADS  Google Scholar 

  • I. Semeniouk, D. Bernard, C++ implementation of Bethe–Heitler, 5D, polarized, γe+e pair conversion event generator. Nucl. Instrum. Methods A 936, 290–291 (2019). https://doi.org/10.1016/j.nima.2018.09.154

    ADS  Google Scholar 

  • T. Shahbaz, D.M. Russell et al., Evidence for magnetic field compression in shocks within the jet of V404 Cyg. Mon. Not. R. Astron. Soc. 463(2),1822–1830 (2016). https://doi.org/10.1093/mnras/stw2171, https://academic.oup.com/mnras/article-pdf/463/2/1822/9686613/stw2171.pdf

  • S. Shakeri, A. Allahyari, Circularly polarized EM radiation from GW binary sources. J. Cosmol. Astropart. Phys. 11, 042 (2018). https://doi.org/10.1088/1475-7516/2018/11/042, 1808.05210

  • V. Sharma, S. Iyyani et al., Time varying polarized gamma-rays from GRB 160821A: evidence for ordered magnetic fields (2019). arXiv e-prints arXiv:1908.10885. 1908.10885

    Google Scholar 

  • N.J. Shaviv, A. Dar, Gamma-ray bursts from minijets. Astrophys. J. 447,863 (1995). https://doi.org/10.1086/175923, astro-ph/9407039

  • F. Shirazi, P.F. Bloser et al., Modeling and development of soft gamma-ray channeling. in Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, International Society for Optics and Photonics, J.W.A. den Herder, S. Nikzad, K. Nakazawa, SPIE, vol. 10699 (2018), pp. 1425–1433. https://doi.org/10.1117/12.2312300

  • K.P. Singh, S.N. Tandon et al., ASTROSAT mission, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9144 (2014). https://doi.org/10.1117/12.2062667

  • C.C. Sleator, A. Zoglauer et al., Benchmarking simulations of the Compton Spectrometer and Imager with calibrations. Nucl. Instrum. Methods Phys. Res. A 946, 162643 (2019). https://doi.org/10.1016/j.nima.2019.162643, 1911.02992

  • G.G. Stokes, Composition and resolution of streams of polarized light from multiple sources. Trans. Camb. Philos. Soc. 9, 399–416 (1852). Reprinted in Mathematical and Physical Papers, vol. 3, Cambridge University Press, London, 1901

    Google Scholar 

  • E. Suarez-Garcia, W. Hajdas et al., X-ray polarization of solar flares measured with rhessi. Solar Phys. 239(1–2), 149–172 (2006). https://doi.org/10.1007/s11207-006-0268-1, astro-ph/0609778

  • C. Sun, Y.K. Wu, Theoretical and simulation studies of characteristics of a Compton light source. Phys. Rev. Accel. Beams 14(4), 044701 (2011). https://doi.org/10.1103/PhysRevSTAB.14.044701, 1101.4433

  • H. Tajima et al., Polarimetry with ASTRO-H soft gamma-ray detector, in X-ray Polarimetry: A New Window in Astrophysics ed. by R. Bellazzini, E. Costa, G. Matt, G. Tagliaferri (Cambridge University Press, 2010), p. 275. ISBN: 9780521191845

    Google Scholar 

  • S. Takahashi, S. Aoki et al., GRAINE project: The first balloon-borne, emulsion gamma-ray telescope experiment. PTEP 2015(4), 043H01 (2015). https://doi.org/10.1093/ptep/ptv046

  • S. Tashenov, Circular polarimetry with gamma-ray tracking detectors. Nucl. Instrum. Meth. Phys. Res. A. 640(1), 164–169 (2011). https://doi.org/10.1016/j.nima.2011.03.011

    ADS  Google Scholar 

  • M. Titov, Radiation damage and long-term aging in gas detectors, in Innovative Detectors for Supercolliders (2004), pp. 199–226. https://doi.org/10.1142/9789812702951_0014, physics/0403055

  • K. Toma, T. Sakamoto et al., Statistical properties of gamma-ray burst polarization. Astrophys. J. 698, 1042–1053 (2009). https://doi.org/10.1088/0004-637X/698/2/1042, 0812.2483

  • J.A. Tomsick, A. Zoglauer et al., The compton spectrometer and imager. in 37th International Cosmic Ray Conference (ICRC 2021), Berlin, Germany, vol. ICRC2021 (2019), p 652. https://doi.org/10.22323/1.395.0652, 1908.04334

  • W. Trautmann, J. de Boer et al., Evidence for negative deflection angles in 40Ar + Ag deep-inelastic reactions from γ-ray circular polarization measurements. Phys. Rev. Lett. 39(17), 1062–1065 (1977). https://doi.org/10.1103/PhysRevLett.39.1062

    ADS  Google Scholar 

  • J. Tueller, H.A. Krimm et al., InFOCμS Hard X-ray imaging telescope. Exp. Astron. 20(1–3), 121–129 (2005). https://doi.org/10.1007/s10686-006-9028-3

    ADS  Google Scholar 

  • P. Ubertini, F. Lebrun et al., IBIS: the imager on-board INTEGRAL. Astron. Astrophys. 411, L131–L139 (2003). https://doi.org/10.1051/0004-6361:20031224

    ADS  Google Scholar 

  • S.V. Vadawale, T. Chattopadhyay, J. Pendharkar, A conceptual design of hard X-ray focal plane detector for simultaneous x-ray polarimetric, spectroscopic, and timing measurements. in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8443 (2012). https://doi.org/10.1117/12.935295

  • S.V. Vadawale, T. Chattopadhyay et al., Hard X-ray polarimetry with Astrosat-CZTI. Astron. Astrophys. 578, 73 (2015). https://doi.org/10.1051/0004-6361/201525686

    Google Scholar 

  • S.V. Vadawale, T. Chattopadhyay et al., Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager. Nat. Astron. 2, 50–55 (2018). https://doi.org/10.1038/s41550-017-0293-z

    ADS  Google Scholar 

  • G. Vedrenne, J.P. Roques et al., SPI: the spectrometer aboard INTEGRAL. Astron. Astrophys. 411, L63–L70 (2003). https://doi.org/10.1051/0004-6361:20031482

    ADS  Google Scholar 

  • K. Viironen, J. Poutanen, Light curves and polarization of accretion- and nuclear-powered millisecond pulsars. Astron. Astrophys. 426, 985–997 (2004). https://doi.org/10.1051/0004-6361:20041084, astro-ph/0408250

  • A. von Kienlin, C.A. Meegan et al., The fourth Fermi-GBM gamma-ray burst catalog: a decade of data. Astrophys. J. 893(1), 46 (2020). https://doi.org/10.3847/1538-4357/ab7a18, 2002.11460

  • Z. Wadiasingh, M.G. Baring et al., Resonant inverse compton scattering spectra from highly-magnetized neutron stars (2017). 1712.09643

    Google Scholar 

  • Z. Wadiasingh, G. Younes et al., Magnetars as astrophysical laboratories of extreme quantum electrodynamics: the case for a compton telescope (2019). 1903.05648

    Google Scholar 

  • M.C. Weisskopf, E.H. Silver et al., A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. Astrophys. J. Lett. 220, L117–L121 (1978). https://doi.org/10.1086/182648

    ADS  Google Scholar 

  • G.C. Wick, Detection of gamma-ray polarization by pair production. Phys. Rev. 81(3), 467–468 (1951). https://doi.org/10.1103/PhysRev.81.467.2

    ADS  Google Scholar 

  • B. Wojtsekhowski et al., Pair polarimeter for high-energy photons, in Invited Talk compiled for 14th International Spin Physics Symposium (SPIN 2000), Osaka, Japan, 16–21 Oct 2000 (2019)

    Google Scholar 

  • X. Wu, R. Walter et al., PANGU: a wide field gamma-ray imager and polarimeter. in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, J.W.A. den Herder, T. Takahashi, M. Bautz, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9905 (2016), p. 99056E. https://doi.org/10.1117/12.2231871

  • I.A. Yadigaroglu, Sensitivity of γ-ray detectors to polarization. Exp. Astron. 7(3), 221–237 (1997). astro-ph/9612129

    Google Scholar 

  • C. Yang, Y.C. Zou, Y.Y. Zhang, B. Liao, W.H. Lei, Testing the Einstein’s equivalence principle with polarized gamma-ray bursts. Mon. Not. R. Astron. Soc. 469(1), L36–L38 (2017). https://doi.org/10.1093/mnrasl/slx045, 1706.00889

  • C.Y. Yang, A. Lowell et al., The polarimetric performance of the Compton Spectrometer and Imager (COSI). in J.W.A. den Herder, S. Nikzad, K. Nakazawa, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, International Society for Optics and Photonics, SPIE, vol. 10699 (2018), pp. 642–651. https://doi.org/10.1117/12.2312556

  • D. Yonetoku, T. Murakami et al., Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation. Astrophys. J. 609, 935–951 (2004). https://doi.org/10.1086/421285, astro-ph/0309217

  • D. Yonetoku, T. Murakami et al., Development of polarimeter for gamma-ray bursts onboard the solar-powered sail mission, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6266 (2006). https://doi.org/10.1117/12.670134

  • D. Yonetoku, T. Murakami et al., Detection of gamma-ray polarization in prompt emission of GRB 100826A. Astrophys. J. Lett. 743, L30 (2011). https://doi.org/10.1088/2041-8205/743/2/L30, 1111.1779

  • D. Yonetoku, T. Murakami et al., Magnetic structures in gamma-ray burst jets probed by gamma-ray polarization. Astrophys. J. Lett. 758, L1 (2012). https://doi.org/10.1088/2041-8205/758/1/L1, 1208.5287

  • F. Zhang, C. Herman, Z. He, G. De Geronimo, E. Vernon, J. Fried, Characterization of the h3d asic readout system and 6.0 cm3 3-d position sensitive cdznte detectors. IEEE Trans. Nucl. Sci. 59(1), 236–242 (2012)

    Google Scholar 

  • H. Zhang, M. Böttcher, X-Ray and Gamma-Ray Polarization in Leptonic and Hadronic Jet Models of Blazars. Astrophys. J. 774, 18 (2013). https://doi.org/10.1088/0004-637X/774/1/18, 1307.4187

  • S.N. Zhang, M. Kole et al., Detailed polarization measurements of the prompt emission of five gamma-ray bursts. Nat. Astron. 3, 258–264 (2019). https://doi.org/10.1038/s41550-018-0664-0, 1901.04207

  • V.V. Zharkova, A.A. Kuznetsov, T.V. Siversky, Diagnostics of energetic electrons with anisotropic distributions in solar flares. I. Hard X-rays bremsstrahlung emission. Astron. Astrophys. 512, A8 (2010). https://doi.org/10.1051/0004-6361/200811486

    Google Scholar 

  • I.A. Zhitnik, Y.I. Logachev et al., Polarization, temporal, and spectral parameters of solar flare hard X-rays as measured by the SPR-N instrument onboard the CORONAS-F satellite. Solar Syst. Res. 40(2), 93–103 (2006). https://doi.org/10.1134/S003809460602002X

    ADS  Google Scholar 

  • P.A. Zyla et al., Review of particle physics. PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Kislat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bernard, D., Chattopadhyay, T., Kislat, F., Produit, N. (2024). Gamma-Ray Polarimetry. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-19-6960-7_52

Download citation

Publish with us

Policies and ethics