Skip to main content

A Comparative Study for Machine Learning Models in Retail Demand Forecasting

  • Conference paper
  • First Online:
Human-Centric Smart Computing

Abstract

Effective and efficient supply chain management is one of the primary factors behind the success of modern-day organizations. The necessity to circumvent the impediments between supply and demand in any organization brings in the need for machine learning techniques. The performance of several machine learning methods, namely, random forest, gradient boosting, and XGBoost have been compared for demand forecasting. Weekly sales data of a multinational retail chain used consists of various attributes affecting the sales, for example, consumer price index and store size in the region. The data represents the sales made in 45 stores over 3 years across the United States of America. The comparison between the methods mentioned to find the most optimal forecasting method among them has been done through various performance metrics, namely, MAE, MSE, and R2 scores. The XGBoost model outperforms random forest and gradient boosting models producing the most accurate predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huber, J., Stuckenschmidt, H.: Daily retail demand forecasting using machine learning with emphasis on calendric special days. Int. J. Forecast. 36(4), 1420–1438 (2020)

    Article  Google Scholar 

  2. Van Donselaar, K.H., Gaur, V., Van Woensel, T., Broekmeulen, R.A.C.M., Fransoo, J.C.: Ordering behavior in retail stores and implications for automated replenishment. Manage. Sci. 56(5), 766–784 (2010)

    Google Scholar 

  3. Aamer, A., Yani, L.P.E., Priyatna, I.M.A.: Data analytics in supply chain management: review of machine learning applications in demand forecasting. Oper. Supply Chain Manage. Int. J. 14(1), 1–13 (2020)

    Google Scholar 

  4. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., Zdeborová, L.: Machine learning and the physical sciences. Rev. Mod. Phys. 91(4), 045002 (2019)

    Article  Google Scholar 

  6. Mahesh, B.: Machine learning algorithms—a review. Int. J. Sci. Res. (IJSR) [Internet] 9, 381–386 (2020)

    Google Scholar 

  7. Shrestha, Y.R., Krishna, V., von Krogh, G.: Augmenting organizational decision-making with deep learning algorithms: principles, promises, and challenges. J. Bus. Res. 123, 588–603 (2021)

    Google Scholar 

  8. Carbonneau, R., Vahidov, R., Laframboise, K.: Machine learning-based demand forecasting in supply chains. Int. J. Intell. Inf. Technol. (IJIIT) 3(4), 40–57 (2007)

    Article  MATH  Google Scholar 

  9. Smolak, K., Kasieczka, B., Fialkiewicz, W., Rohm, W., Siła-Nowicka, K., Kopańczyk, K.: Applying human mobility and water consumption data for short-term water demand forecasting using classical and machine learning models. Urban Water J. 17(1), 32–42 (2020)

    Article  Google Scholar 

  10. Sillanpää, V., Liesiö, J.: Forecasting replenishment orders in retail: value of modelling low and intermittent consumer demand with distributions. Int. J. Prod. Res. 56(12), 4168–4185 (2018)

    Article  Google Scholar 

  11. Mohammed, A.: Towards ‘gresilient’ supply chain management: a quantitative study. Resour. Conserv. Recycl. 155, 104641 (2020)

    Article  Google Scholar 

  12. Lambert, D.M., Cooper, M.C.: Issues in supply chain management. Ind. Mark. Manage. 29(1), 65–83 (2000)

    Article  Google Scholar 

  13. Ben-Daya, M., Hassini, E., Bahroun, Z.: Internet of things and supply chain management: a literature review. Int. J. Prod. Res. 57(15–16), 4719–4742 (2019)

    Article  Google Scholar 

  14. Zekhnini, K., Cherrafi, A., Bouhaddou, I., Benghabrit, Y., Garza-Reyes, J.A.: Supply chain management 4.0: a literature review and research framework. Benchmarking Int. J. (2020)

    Google Scholar 

  15. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20(1), 5–10 (2004)

    Article  Google Scholar 

  16. Makridakis, S., Wheelwright, S.C., Hyndman, R.J.: Forecasting Methods and Applications. John Wiley & Sons (2008)

    Google Scholar 

  17. Chase, C.W.: Next Generation Demand Management: People, Process, Analytics, and Technology. John Wiley & Sons (2016)

    Google Scholar 

  18. Moroff, N.U., Kurt, E., Kamphues, J.: Machine learning and statistics: a study for assessing innovative demand forecasting models. Proc. Comput. Sci. 180, 40–49 (2021)

    Google Scholar 

  19. Parsa, A.B., Movahedi, A., Taghipour, H., Derrible, S., Mohammadian, A.K.: Toward safer highways, application of XG Boost and SHAP for real-time accident detection and feature analysis. Accid. Anal. Prev. 136, 105405 (2020)

    Google Scholar 

  20. More, A.S., Dipti, P.R.: Review of random forest classification techniques to resolve data imbalance. In: 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM), pp. 72–78. IEEE (2017)

    Google Scholar 

  21. Waliyansyah, R.R., Saputro, N.D.: Forecasting new student candidates using the random forest method. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi 11(1), 44 (2020)

    Article  Google Scholar 

  22. Zhang, Y., Haghani, A.: A gradient boosting method to improve travel time prediction. Transp. Res. Part C Emerg. Technol. 58, 308–324 (2015)

    Article  Google Scholar 

  23. Zhan, X., Zhang, S., Szeto, W.Y., Chen, X.: Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree. J. Intell. Transp. Syst. 24(2), 125–141 (2020)

    Google Scholar 

  24. Xie, J., Wang, Q., Liu, P., Li, Z.: A hyperspectral method of inverting copper signals in mineral deposits based on an improved gradient-boosting regression tree. Int. J. Remote Sens. 42(14), 5474–5492 (2021)

    Article  Google Scholar 

  25. Chen, T., Guestrin, C.: XG Boost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  26. Kaplan, U.E., Dagasan, Y., Topal, E.: Mineral grade estimation using gradient boosting regression trees. Int. J. Min. Reclam. Environ. 35(10), 728–742 (2021)

    Google Scholar 

  27. Singh, D., Singh, B.: Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 97, 105524 (2020)

    Article  Google Scholar 

  28. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques third edition. Morgan Kaufmann Ser. Data Manage. Syst. 5(4), 83–124 (2011)

    Google Scholar 

  29. Hossin, M., Nasir Sulaiman, Md.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manage. Process 5(2), 1 (2015)

    Google Scholar 

  30. Wilsdon, J.: We need a measured approach to metrics. Nature 523(7559), 129–129 (2015)

    Article  Google Scholar 

  31. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  32. Nakagawa, S., Johnson, P.C.D., Schielzeth, H.: The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14(134), 20170213 (2017)

    Google Scholar 

  33. Cheng, C.-L., Garg, G.: Coefficient of determination for multiple measurement error models. J. Multivar. Anal. 126, 137–152 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitra, A., Jain, A., Kishore, A., Kumar, P. (2023). A Comparative Study for Machine Learning Models in Retail Demand Forecasting. In: Bhattacharyya, S., Banerjee, J.S., Köppen, M. (eds) Human-Centric Smart Computing. Smart Innovation, Systems and Technologies, vol 316. Springer, Singapore. https://doi.org/10.1007/978-981-19-5403-0_23

Download citation

Publish with us

Policies and ethics